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Monotonic Extension

By Farhad Husseinov

Abstract

The main result of this paper gives a necessary and sufficient condition for a
continuous, strictly monotone function defined on a closed set of a Euclidean space to
be extendible to the whole space.

Key words: Monotonic function, extension, normally ordered topological spaces,
selection.
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1. Introduction

It is somewhat surprising that the problem of extending a continuous monotonic
function defined on a subset of a Euclidean space into the entire space with preservation
of its properties has received scant attention. In this paper we tackle this problem
for the cases of both monotonic and strictly monotonic functions. For each case we
find a property that is necessary and sufficient for the given function to be extendible
by preserving the continuity and strict monotonicity properties. However, the central
result of this paper (Theorem 3) deals with the case of strictly monotone functions.

Nachbin [1] studied the problem of extending a continuous, (weakly) monotone
(isotone in his terms) and bounded functions defined on closed subsets of an arbitrary
normally ordered topological space. These spaces, introduced in [1], generalize normal
topological spaces to the spaces equipped with an order relation. He discovered a
property (called further the Nachbin property) that is necessary and sufficient for the
existence of an extension that satisfies the said properties [1, Theorem 2]. Nachbin’s
extension theorem has found applications in diverse fields.

In this paper, we first introduce a property that proves to be equivalent to the
Nachbin property.and hence we get a modification of Nachbin’s extension theorem.
However, we give an independent short proof of this version based on Michael’s
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selection theorem [2] for the case of Euclidean spaces ordered with the standart
componentwise order. We assume that this proof will provide intuitions about
difficulties in treating the case of strictly increasing functions.

It seems impossible to formulate a version of the Nachbin property that will be
suitable for treating strictly increasing functions. However, the property introduced
here readily strengthens for this case.

2. Notation and Preliminaries

A preorder < on a set X is a reflexive ans transitive binary relation on this set. If
in addition, < is antisymmetric (that is x < y and y < x imply x = y) then it is called
an order. A real function f defined on a subset D of the preordered set X is said to
be increasing if for any two points x, y ∈ D such that x < y, we have f(x) > f(y). In
turn f is said to be strictly increasing if for any two points x, y ∈ D such that x � y,
we have f(x) > f(y). Decreasing and strictly decreasing functions are defined in a
similar way. A function f ′ : D′ → R is an extension of a function f if D ⊂ D′ and
f ′(x) = f(x) for all x ∈ D.

A set A in X is decreasing if x ∈ A and x < y imply y ∈ A. An increasing set is
defined dually. A set X equipped with the both topology τ and preorder < is said to
be normally preordered if, for every closed disjoint subsets F0 and F1 of X, such that
F0 is decreasing and F1 is increasing, there exist two disjoint open sets U0 and U1 of
X, such that U0 is decreasing and contains F0 and U1 is increasing and contains F1.

Let (X, τ,<) be an arbitrary preordered topological space. The decreasing closure,
denoted as D(A), of a set A in Rn is the smallest decreasing and closed set containing
A. The increasing closure of A is defined dually and denoted as I(A). For a function
f : D → R and a real α, set

Lf (α) = {x ∈ D : f(x) 6 α} and Uf (α) = {x ∈ D : f(x) > α}.

The Nachbin property reads as follows: for each α, α′ ∈ R such that α < α′

D(Lf (α)) ∩ I(Uf (α
′)) = ∅.

We now introduce a condition that is equivalent to the Nachbin condition. Denote by
Vxd and Vxi the collections of open decreasing and open increasing sets containing x.
For a given function f : D → R, where D is an arbitrary set in X, we set

mf (x) = inf
V x
1 ∈Vx

d

sup{f(z) : z ∈ D ∩ V x
1 } and Mf (x) = sup

V x
2 ∈Vx

i

inf{f(z) : z ∈ D ∩ V x
2 },
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with the agreement that mf (x) = inf{f(z) : z ∈ D} and Mf (x) = sup{f(z) : z ∈ D},
if D ∩ V x

1 = ∅ for some V x
1 ∈ Vxd and D ∩ V x

2 = ∅ for some V x
2 ∈ Vxi , respectively.

Further we will omit subindex f in the notations mf and Mf in cases where it is clear
which function is refered to.

We will see shortly that the Nachbin property is equivalent to the following property:

mf (x) 6Mf (x) for all x ∈ X. (1)

Before we give some examples illustrating property (1) and its strengthening (see
property (13) below).

Examples: Set D+ = {(x, y) ∈ R2|xy = −1, y > 0}, D− = −D+, and D = D+∪D−.
Define functions fi : D → R as y

1+y
on D+ and i− 2 + y

1−y on D− for i = 1, 2, 3.

It is easy to see that function f1 has no increasing extension, f2 has an increasing
extension but not a strictly increasing extension, and f3 has a strictly increasing
extension into R2. We have mf1(0) = mf2(0) = mf3(0) = 0 and Mfi

(0) = i − 2 for
i = 1, 2, 3. Hence mf1(0) > Mf1(0), mf2(0) = mf2(0), and mf3(0) < Mf3(0). Thus
property (1) is violated for function f1 and satisfied for functions f2 and f2 at point
x = 0.

Claim: The Nachbin property and property (1) are equivalent.

Proof: Indeed, let m(x) > M(x) for some x ∈ X. It follows from the definitions of
functions m and M that for each V x

1 ∈ Vxd and V x
2 ∈ Vxi

sup{f(z) : z ∈ D ∩ V x
1 } > m(x) > M(x) > inf{f(z) : z ∈ D ∩ V x

2 }.

This implies x ∈ D(Lf (M(x)))∩I(Uf (m(x))), which contradicts the Nachbin property.
Assume the Nachbin property is violated, that is, there exist reals α, α′ with α < α′

such that
D(Lf (α)) ∩ I(Uf (α

′)) 6= ∅.
Let x belong to this intersection. Then m(x) > α′ and α > M(x), which imply
m(x) > M(x). This contradicts property (1). �

This claim together with the Nachbin theorem [1, p. 36] prove the following version
of Nachbin’s extension theorem:

Theorem 1. Let X be a normally preordered space and let D ⊂ X be a closed set.
Let f : D → R be a continuous and monotonic function. Then f has an extension if
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and only if property (1) is satisfied.

Remark. Nachbin’s extension theorem assumes the boundedness of function f.
Howvere, the following simple observation removes this assumption:
For an arbitrary function f : D → R and for every increasing homeomorphism φ : R→
(0, 1)

φ ◦mf = mφ◦f and φ ◦Mf = Mφ◦f .

Classical examples of normally partially ordered spaces are Euclidean spaces ordered
with the componentwise order. Recall that a preorder is called apartial order if it is
antisymmetric. For two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn we write
x 6 y if xi 6 yi for all i = 1, . . . , n; x ≤ y if x 6 y and x 6= y, and x < y if xi < yi for all
i = 1, . . . , n. We also write x > y, x ≥ y, x > y if y 6 x, y ≤ x, y < x, respectively.
Since the preorder > on Rn is antisymmetric preorder, (Rn,>) is a normally partially
ordered space. Denote by e the vector in Rn all of whose components are 1, and
ek (k = 1, . . . , n) the vector in Rn whose k-th component is 1 and all other components
are 0.

3. Extension of increasing functions

In this section we consider the problem of extending a continuous, (weakly)
increasing function f : D → R, where D is a closed set in Rn, into the entire space Rn.
Here we give a necessary and sufficient condition for the existence of such extensions.
As the equivalence of the Nachbin property and property (1) is proved above, the
following extension result is a modification of the Nachbin theorem [1, p. 36] for the
case of Euclidean spaces.

Theorem 2. Let D ⊂ Rn be a nonempty, closed set and f : D → R a continuous,
increasing function. Then there exists a continuous, increasing function F : Rn → R
such that F (x) = f(x) for x ∈ D if and only if function f satisfies inequality (1).

Proof: If there exists a continuous, increasing extension F of function f, then
obviously m(x) 6 F (x+ re) and M(x) > F (x− re) for all x ∈ Rn and all r > 0. Since,
F is continuous it follows that m(x) 6 F (x) 6 M(x) and hence m(x) 6 M(x) for all
x ∈ Rn.

Conversely, we now prove now that if property (1) holds, then there exists an
extension F as stated in the theorem.
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Claim: m(·) is upper semicontinuous and M(·) is lower semicontinuous. Hence,
the correspondence x 7→ [m(x),M(x)], x ∈ R2 is lower hemicontinuous.

Proof: Fix x0 ∈ Rn. Let ε > 0. By the definition of m(·) there exists a positive
number r such that

sup{f(z) : z ∈ D, z 6 x0 + 2re} < m(x0) + ε.

Since for each x ∈ Br(x0) the inequality z 6 x + re implies z 6 x0 + 2re, we have
m(x) < m(x0) + ε for each x ∈ Br(x0). That is, m(·) is upper semicontinuous. The
lower semicontinuity of M(·) is proved similarly.

We extend first f into D ∪ K1, where K1 = [−1, 1]n. By the Michael’s selection
theorem there exists a continuous function g′ : K1 → R such that m(x) 6 g′(x) 6M(x)
for all x ∈ K1. Since m(x) = M(x) = f(x) for x ∈ D ∩K1 we have g′(x) = f(x) for
x ∈ D ∩K1. Set

g(x) = max{g′(z) : z ∈ K1, z 6 x} for x ∈ K1.

It is an easy matter to show that g is continuous and increasing. Obviously m(x) ≤
g(x) for x ∈ K1. Moreover, since M(·) is increasing we have g(x) ≤ M(x) for x ∈ K1.
Thus

m(x) 6 g(x) 6M(x) for x ∈ K1.

Indeed, we claim that the function f1 : D ∪ K1 → R defined as f(x) for
x ∈ D \ K1, and as g(x) for x ∈ K1 is continuous and increasing. Obviously, f1 is
continuous on D \ K1. Let x0 ∈ K1 and {xk} be a sequence in D \ K1 converging
to x0. Since D is assumed to be closed, x0 ∈ D. Therefore g′(x0) = f(x0). By the
definition of function g, g(x0) = f(x0). Since f is continuous on D it follows that
f1(xk) = f(xk) → f(x0) = g(x0) = f1(x0). Now show that f1 is increasing. Take
x ∈ K1 and y ∈ D, y 6 x. Then, f1(y) = f(y) 6 m(x) 6 f1(x). Take x ∈ K1

and y ∈ D, y > x. Then, f1(y) = M(y) > M(x) > f1(x). Since, f1|K1 and f1|D
are increasing it follows that f1 is increasing. So we constructed a continuous and
increasing extension f1 of function f into D1 = D ∪K1.

Now we show that f1 has the property

mf1(x) 6Mf1(x) for all x ∈ Rn. (2)

For any point x in Rn denote by x̂ the point in K1 that is closest to x. We consider
four cases:
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Case 1: x ∈ Rn \ [(K1 + Rn
+) ∪ (K1 − Rn

+)]. Clearly, mf1(x) = mf (x) and
Mf1(x) = Mf (x), and hence mf1(x) 6Mf1(x).

Case 2: x ∈ (K1 +Rn
+) \K1. By the monotonicity and continuity of function f1 we

have mf1(x) = max{f1(x̂),mf (x)}. This and the inequalities f1(x̂) 6 Mf (x̂) 6 Mf (x)
and mf (x) 6Mf (x) and the equality Mf (x) = Mf1(x) imply mf1(x) 6Mf1(x).

Case 3: x ∈ (K1 − Rn
+) \K1. Again by th monotonicity and continuity of function

f 1 we have Mf (x) = min{f1(x̂),Mf (x)}. This together with the inequalities f1(x̂) >
mf (x̂) > mf (x) and Mf (x) > mf (x), and the equality mf (x) = mf1(x) imply mf1(x) 6
Mf1(x).

Case 4: x ∈ K1. We have Mf (x) 6 f1(x) 6 mf (x) and hence
Mf (x) = f1(x) = mf (x). Obviously, Mf1(x) > Mf (x) and mf1(x) 6 mf (x).
Therefore, mf1(x) 6Mf1(x).

Since, f1 : D1 → R, where D1 ⊂ Rn is a closed set, is continuous and possesses
property (2), by the above argument we can extend f1 into D2 = D ∪ K2, where
K2 = [−2, 2]n. Proceeding in this manner we will obtain a continuous and increasing
extension F of function f into the whole space Rn. �

Corollary 1. Let D ⊂ Rn be a nonempty, compact set and f : D → R a
continuous, increasing function. Then there exists a continuous, increasing function
F : Rn → R such that F (x) = f(x) for x ∈ D.

Proof: It is easy to see that when D is nonempty and compact, functions M and m
can be defined as

m(x) = max{f(z) : z ∈ D ∩ L(x)} and M(x) = min{f(z) : z ∈ D ∩ U(x)} (3)

for x ∈ Rn, where L(x) = x+Rn
− and U(x) = x+Rn

+.
By the monotonicity of f, obviously m(x) 6 M(x) for all x ∈ Rn. Theorem 2 applies.
�

4. Extension of strictly increasing functions

We shall consider Rn with the square-norm ||x|| = max{|xi|, i = 1, . . . , n}. For
a nonempty set E ⊂ Rn and a point x ∈ Rn the distance between them is defined
as dist (x,E) = inf{||x − y|| : y ∈ E}. For a set E ⊂ Rn, E̊ and ∂E will denote its
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interior and its boundary, respectively.

Throughout this section, K, possibly equipped with indexes, will denote a
cube in Rn with the edges parallel to coordinate axes. A face of the cube
K = [ai, bi]

n in Rn is called a lower (upper) face if it contains the smallest (greatest)
vertex a = (a1, . . . , an) (b = (b1, . . . , bn)). The word ‘extension’ will mean ‘continuous
strictly increasing extension’.
Further for t ∈ R the interval (t, t) will mean the singleton {t}.

Proof of the following statement is straightforward.

Claim 1. The supremum and infimum of a family of equicontinuous functions
defined on a set E ⊂ Rn is continuous.

Claim 2. Let K ⊂ Rn be a cube and F1, F2 : K → R continuous, monotone
functions such that F1(x) < F2(x) for all x ∈ K, and f : ∂K → R continuous, strictly
increasing function, such that

f(x) ∈ (F1(x), F2(x)) for x ∈ ∂K.

Then there exists a continuous, strictly increasing extension F of function f into K
such that

F (x) ∈ (F1(x), F2(x)) for all x ∈ K.

Proof: Define m̄, M̄ : K → R as

m̄(x) = max{f(z) : z ∈ ∂K, z 6 x} and M̄(x) = min{f(z) : z ∈ ∂K, z > x}.

Note that functions m̄, and M̄ are monotone and

m̄|∂K = M̄ |∂K = f.

Moreover, m̄ is upper semicontinuous and M̄ is lower semicontinuous, m̄ is continuous
on (∂K)∪ K̊ and M̄ continuous on (∂K)∪ K̊, where ∂K is the union of the lower faces
of K and ∂K is the union of the upper faces of K. Set

m′(x) = max{m̄(x), F1(x)}, and M ′(x) = min{M̄(x), F2(x)}.

Functions m′, and M ′ are monotone,

F1(x) 6 m′(x) < F2(x), F1(x) < M ′(x) 6 F2(x) for all x ∈ K. (4)

Moreover,

m′(x) < M ′(x) for x ∈ K̊ and m′(x) = M ′(x) = f(x) for x ∈ ∂K. (5)
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Set
F (x) = Λ(x)M ′(x) + (1− Λ(x))m′(x) for x ∈ K, (6)

where Λ : K → R is defined as

Λ(x) =

{
1 for x ∈ ∂K,

dist (x,∂K)

dist (x,∂K)+dist (x,∂K)
otherwise.

It follows that F is continuous, F |∂K = f. Since Λ is strictly increasing on K̊,
and functions m′, and M ′ are monotone it follows that F (x) is strictly increasing on
K̊. This, continuity of F and strict monotonicity of F |∂K imply that F is strictly
increasing.
From the relations (4) and (6), F (x) ∈ (F1(x), F2(x)) for all x ∈ K̊. From the
relations (5) and (6), we have F (x) = f(x) ∈ (F1(x), F2(x)) for x ∈ ∂K. Thus
F (x) ∈ (F1(x), F2(x)) for all x ∈ K. �

Claim 3: Let K be a cube in Rn and G1, G2 : K → R increasing functions such
that

G1(x) < G2(x) for all x ∈ K.

Moreover, let G1 be upper semicontinuous, G2 lower semicontinuous, and f : C →
R, where C is a closed subset (possibly empty) of K, be a continuous function such
that G1(x) < f(x) < G2(x) for every x in C. Then there exist continuous increasing
functions F1, F2 : K → R such that

G1(x) 6 F1(x) < F2(x) 6 G2(x) for all x ∈ K (7)

and
F1(x) < f(x) < F2(x) for all x ∈ C. (8)

Proof: Define

G′1(x) =

{
f(x) for x ∈ C,
G1(x) for x ∈ K \ C.

Function G′1 is upper semicontinuous and G′1(x) < G2(x) for all x ∈ K. Then, d =
min{G2(x) − G′1(x) : x ∈ K} > 0. By Michael’s selection theorem there exists a
continuous function F ′2 on K such that

G′1(x) + d 6 F ′2(x) 6 G2(x) for all x ∈ K.

Define
F2(x) = max{F ′2(z) : z ∈ K, z 6 x} for x ∈ K.
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Function F2 is continuous, increasing and

G′1(x) + d 6 F2(x) 6 G2(x) for all x ∈ K. (9)

The second inequality in (9) follows from the monotonicity of G2. In particular,

f(x) < F2(x) for all x ∈ C. (10)

Define

F ′′2 (x) =

{
f(x) for x ∈ C,
F2(x) for x ∈ K \ C.

Function F ′′2 is lower semicontinuous and F ′′2 (x) > G1(x) for x ∈ K. Then, d′ =
min{F ′′2 (x) − G1(x) : x ∈ K} > 0. By Michael’s selection theorem there exists a
continuous function F ′1 on K such that

G1(x) 6 F ′1(x) 6 F ′′2 (x)− d′ for all x ∈ K.

Set
F1(x) = min{F ′1(z) : z ∈ K, z > x} for all x ∈ K.

Function F1 is continuous, increasing and

G1(x) 6 F1(x) 6 F2(x)− d′ for all x ∈ K. (11)

The first inequality in (11) follows from the monotonicity of G1. The second inequality
implies F1(x) < F2(x) for all x ∈ K. Also

F1(x) < f(x)− d′ for all x ∈ C. (12)

Now inequality (7) follows from inequalities (9) and (11), and inequality (8) from
inequalities (10) and (12). �

Basic Lemma. Let K = Πn[ai, bi]
n be a cube in Rn, C ⊂ K the union of a

family (possibly empty) of faces of K, and f : C → R a continuous, strictly increasing
function. Let F1, F2 : K → R be continuous, increasing functions such that F1(x) <
F2(x) for all x ∈ K and F1(x) < f(x) < F2(x) for all x ∈ C. Then, there exists a
continuous, strictly increasing extension F of function f into K such that

F (x) ∈ (F1(x), F2(x)) for all x ∈ K.

Proof. Assume without loss of generality that K = [0, 1]n. Arrange all the faces of
K into a sequence K1, K2, . . . , Ks so that each face comes before all faces of larger
dimensions and faces of the same dimension are arranged arbitrarily with respect to
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each other and K1 = {a}. If a /∈ C, then we set f(a) to be any number in the interval
(F ′1(a), F ′2(a)), where F ′1(a) = F1(a) if there exists no z ∈ C such that a > z, and

F ′1(a) = max[{f(y) : y ∈ C, y 6 a} ∪ {F1(a)}] otherwise,

and F ′2(a) = F2(a) if there exists no z ∈ C such that z > a, and

F ′2(a) = min[{f(y) : y ∈ C, y > a} ∪ {F2(a)}] otherwise.

Now assume function f is extended into all faces Kj for j < i. We denote this
extension as f. For faces K ′, K ′′ ∈ F of the same dimension we say K ′ is below K ′′ if
there exists a nonnegative vector x such that K ′+x = K ′′ and denote this as K ′ ≺ K ′′.
In this case we also say K ′′ is above K ′ and write K ′′ � K ′. Denote by F the set of
all faces of K; Ki = C ∪ (∪16j<iK

j), i = 1, . . . , s, and Fb(Ki) = {K ′ ∈ F : K ′ ⊂
Ki and K ′ ≺ Ki} and Fa(Ki) = {K ′ ∈ F : K ′ ⊂ Ki and K ′ � Ki}. For each
K ′ ∈ Fb(Ki) (K ′ ∈ Fa(Ki)) we denote by e(K ′) the nonnegative vector such that
Ki − e(K ′) = K ′ (Ki + e(K ′) = K ′). Define functions F ′1, F

′
2 : Ki → R as

F ′1(x) = max{f(x− e(K ′)) : K ′ ∈ Fb(Ki)} ∪ {F1(x)}]

and
F ′2(x) = min[{f(x+ e(K ′)) : K ′ ∈ Fa(Ki)} ∪ {F2(x)}],

Functions F ′1 and F ′2 are continuous, increasing and F ′1(x) < F ′2(x) for all x ∈ Ki,
and F ′1(x) < f(x) < F ′2(x) for all x ∈ ∂Ki. By Claim 2 there exists an extension of
function f |∂Ki into Ki. So we have extended function f into Ki+1 = Ki ∪ Ki. This
extension is continuous and strictly increasing.

The above inductive procedure extends function f into Ks = K. �

Theorem 3. Let D ⊂ Rn be a nonempty, closed set and f : D → R a continuous,
strictly increasing function. Then there exists a continuous, strictly increasing function
F : Rn → R such that F (x) = f(x) for x ∈ D if and only if function f satisfies the
following condition:

m(x) 6M(x) for all x ∈ D and m(x) < M(x) for all x /∈ D. (13)

Proof: First prove that condition (13) is necessary for the existence of an extension
as in the theorem. Let F : Rn → R be an extension of f as in the theorem, and
x0 ∈ Dc. Then, [x0 − r, x0 + r]n ⊂ Dc for some r > 0. Now by the strict monotonicity
F (x0) > F (x0− rek), k = 1, . . . , n. By the continuity of F there exists δ1 ∈ (0, r) such
that

F (x0) > F (x0 − rek + δ1e), k = 1, . . . , n.
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Since D ∩ {x ∈ Rn : x 6 x0 + δ1e} ⊂ ∪nk=1{x ∈ Rn : x 6 x0 − rek + δ1e} and F is
monotonic and F |D = f, it follows that

sup{f(z) : z ∈ D, z 6 x0 + δ1e} < F (x0). (14)

In a similar way it is shown that

F (x0) > inf{f(z) : z ∈ D, z > x0 − δ2e} (15)

for some δ2 > 0.

It follows from the equations (14) and (15) that m(x0) < M(x0).

Now, show that if condition (13) is satisfied then there exists an extension of function
f into Rn. By Theorem 2 there exists a continuous, increasing extension G of function
f into Rn. Denote K = [−1, 1]n and set

ϕ̄(δ) = max{|G(x)−G(y)| : x, y ∈ K, ||x− y|| 6 δ}

for δ > 0. Clearly ϕ̄ : R+ → R is an increasing, continuous function and ϕ̄(0) = 0. Let
ϕ : R+ → R be a strictly increasing, continuous function such that ϕ(δ) > ϕ̄(δ) for all
δ > 0 and ϕ(0) = 0. For y ∈ D ∩K define a function ψy : K → R as

ψy(x) =

{
f(y) for x > y,
f(y)− 2ϕ(dist (x, y +Rn

+)) for x 6> y.

Obviously, ψy is a continuous, increasing function for each y ∈ D ∩K. Set
F1(x) = sup{ψy(x) : y ∈ D} for x ∈ K.

Similarly, define functions χy : K → R as

χy(x) =

{
f(y) for x 6 y,
f(y) + 2ϕ(dist (x, y +Rn

−)) for x 66 y.

Set F2(x) = inf{χy(x) : y ∈ D ∩K} for x ∈ K. Functions F1 and F2 are obviously
increasing, and are continuous by Claim 1. Moreover,

F1(x) = F2(x) = f(x) for x ∈ D ∩K, (16)

and
F1(x) < G(x) < F2(x) for x ∈ K \D. (17)

Define functions F ′1(x) = max{F1(x),m(x)} and F ′2(x) = min{F2(x),M(x)} for x ∈
K, and define a correspondence F : K ⇒ R as

F(x) = [F ′1(x), F ′2(x)] for x ∈ K.
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Conditions (13) imply that m(x) = M(x) = f(x) for all x ∈ D. From this and equation
(16),

F ′1(x) = F ′2(x) = f(x) for x ∈ D ∩K. (18)

Thus, if we show that correspondence F has a strictly increasing continuous
selection, then we are done.

For each k ∈ N consider the family of all hyperplanes parallel to the coordinate
hyperplanes defined by equations xi = m

2k , m ∈ Z, i = 1, . . . , n. For each k ∈ N these
hyperplanes divide Rn into cubes of the side 1

2k . We denote this collection of cubes by
Ok. We call number k the rank of the cubes in Ok. The set K \D is divided into cubes
in O = ∪k∈NOk with the disjoint interiors in the following way. First we pick all cubes
in O1 that are contained in K. Then we pick all cubes in O2 that are contained in K
and are not contained in the cubes in O1 that were picked in the first step, and so
on. Since there are a countable number of cubes chosen we can arrange them into a
sequence K1, K2, . . . , so that rank Kj 6 rank Kj+1 for each j ∈ N. By the relations
(17) and (18) functions F ′1 and F ′2 satisfy the assumptions of Claim 3. By this claim
there exist continuous increasing functions H1 and H2 on K1 such that

F ′1(x) 6 H1(x) < H2(x) 6 F ′2(x) for all x ∈ K1.

Now by the Lemma there exists a continuous, strictly increasing function f1 on K1

such that

H1(x) < f1(x) < H2(x) for all x ∈ K1.

Next, by way of induction assume fl to be a continuous, strictly increasing extension
of f into Dl = D ∪ (∪lj=1Kj) for l ∈ N, satisfying fl(x) ∈ (F1(x), F2(x)) for all x ∈ Dl.
By the Lemma there exists an extension of function fl into Kl+1.

The above inductive procedure extends function f into the union K ∪ D. This
extension, denoted as f 1, is continuous on K1 \ D, because the family of cubes
{K1, K2, . . .} is locally finite and f1 is continuous on each of these cubes. Continuity of
f 1 on K ∪D follows from the continuity of F1 and F2, the inequality F1(x) 6 f 1(x) 6
F2(x) for all x ∈ K, and the equations (16). Finally, f 1 is strictly increasing because it
is strictly increasing on each of the sets Dl (l = 1, 2 . . .), Dl ⊂ Dl+1 (l = 1, 2, . . .), and
its domain is D1 = ∪lDl.

Now we assert that for the extension f 1

mf1(x) = Mf1(x) for x ∈ D1 (19)
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and
mf1(x) < Mf1(x) for x /∈ D1. (20)

The proof of (19) is simple and we omit it. To prove (20) consider three cases.

Case 1: x ∈ (Rn \D1) \ [(K1 +Rn
+) ∪ (K1 −Rn

+)]. Clearly,

mf1(x) = mf (x) and Mf1(x) = Mf (x) and hence mf1(x) < Mf1(x).

For each point x ∈ Rn denote by x̂ the point in K closest to x. Obviously, the
mapping x 7→ x̂ is continuous and increasing.

Case 2: x ∈ (Rn \D1)∩ (K +Rn
+). By the monotonicity and continuity of function

f 1 we have mf1(x) = max{f 1(x̂),mf (x)}. If x̂ ∈ D, then f 1(x̂) = f(x̂) and hence
mf1(x) = mf (x). Obviously, Mf1(x) = Mf (x) and by the assumption mf (x) < Mf (x).
So mf1(x) < Mf1(x). If x̂ /∈ D, then by the construction of function f 1, f 1(x̂) > mf (x)
and hence mf1(x̂) = f 1(x̂). Since f 1(x̂) < Mf (x̂) 6 Mf (x) = Mf1(x) it follows that
mf1(x) < Mf1(x).

Case 3: x ∈ (Rn \D1)∩ (K +Rn
−). By the monotonicity and continuity of function

f 1 we have Mf1(x) = min{f 1(x̂),Mf (x)}. If x̂ ∈ D, then f 1(x̂) = f(x̂) and hence
Mf1(x) = Mf (x). Obviously, mf1(x) = mf (x) and by the assumption mf (x) < Mf (x).
So mf1(x) < Mf1(x). If x̂ /∈ D, then by the construction of function f 1 we have
f 1(x̂) < Mf (x) and hence Mf1(x) = f 1(x̂). Since f 1(x̂) > mf (x̂) > mf (x) = mf1(x),
it follows that mf (x) < Mf1(x).

Now by the above arguments there exists an extension f 2 of function f 1 into
[−2, 2]n ∪ D for which the conditions (13) are satisfied. Proceeding in this way we
obtain a continuous, strictly increasing function F : Rn → R which is an extension of
f. �

Corollary 2. Let D ⊂ Rn be a nonempty, compact set, and f : D → R a
continuous, strictly increasing function. Then there exists a continuous, strictly
increasing function F : Rn → R such that F (x) = f(x) for x ∈ D.

Proof: As was noted in the proof of Corollary 1, functions m and M can be
equivalently defined by the formulas in (3). It is clear from the formulas in (3) that
m(x) = M(x) for x ∈ D and m(x) < M(x) for x /∈ D. Theorem 3 applies. �

The formulas (3) may hold for some unbounded closed domains as well. However
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this alone is not sufficient for assumption (13 ) of Theorem 3 to hold. If in addition the
sets D ∩ L(x) and D ∩ U(x) have the compact sets of 6 −maximal and 6 −minimal
elements, respectively, then assumption (13) holds. Examples of domains with this
property are subsets of Zn, where Z = {0,±1,±2, . . .}.

Corollary 3. Let f : D → R, where D ⊂ Zn, be a strictly increasing function.
Then there exists a continuous, strictly increasing function F : Rn → R such that
F (x) = f(x) for all x ∈ D. In particular, for every strictly increasing function f :
D → R there exists a strictly increasing extension of function f into Zn.
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