
Bias Reduction in Nonlinear and Dynamic
Panels in the Presence of Cross-Section

Dependence, with a GARCH Panel Application�

Cavit Pakely

Department of Economics
Bilkent University

Abstract

In nonlinear dynamic panels where the time-series dimension, T; is small relative to the cross-section
dimension, N , �xed e¤ect models are subject to the incidental parameter bias. Considering a gen-
eral setting where dependence across both T and N is allowed, I use the integrated likelihood
method to characterise this bias and obtain bias-reduced estimators: Under large-T; large-N as-
ymptotics, I show that time-series dependence leads to an extra incidental parameter bias term,
which is not present in the iid case. Moreover, due to cross-section dependence, a second type
of bias emerges, the magnitude of which depends on the level of dependence. Likelihood-based
analytical expressions are provided for both terms. Next, the particular case of spatial dependence
with clustered individuals is considered. It turns out that, under certain conditions, the bias due
to cross-section dependence is negligible in this setting. I then utilise these results to �t GARCH
models using a panel structure. Monte Carlo analysis reveals that the proposed method success-
fully �ts GARCH with little bias and no increase in variance using 150-200 time-series observations,
compared to around 1,000-1,500 observations required for successful GARCH estimation by stan-
dard methods. Simulation results further indicate that the e¤ect of cross-section dependence on
bias is negligible, although it leads to higher estimator variance. Finally, I consider two empirical
illustrations; an analysis of monthly hedge fund volatility characteristics and a test of predictive
ability using daily stock volatility forecasts.
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1 Introduction

A substantial body of research in econometrics has been dedicated to controlling for unob-

served individual heterogeneity (see Chamberlain (1984) and Arellano and Honoré (2001)

for surveys.). In the simple case of linear static models, the endogeneity issue caused by

unobserved heterogeneity can be dealt with by �rst-di¤erencing and thereby eliminating

the time-invariant heterogeneity. In dynamic and nonlinear models, however, such inex-

pensive solutions are largely model-speci�c and not widely available (see Andersen (1970),

Honoré (1992), Honoré and Kyriazidou (2000) and Horowitz and Lee (2004) for exam-

ples). In addition to inconsistency, a further potential statistical problem in this literature

is identi�cation of the common parameter, as mentioned by Arellano and Hahn (2007)

and Arellano and Bonhomme (2011).

Originally the interest has mainly been on data characterised by a few time-series and a

large number of cross-section observations, i.e. �xed-T large-N asymptotics. Nevertheless,

increasing availability of datasets with comparable time-series and cross-section dimensions

makes large-T large-N asymptotics equally relevant.1 There is now a growing literature

where, in order to deal with the heterogeneity issue under large-T large-N asymptotics, the

individual-e¤ects are considered as parameters to be estimated in a maximum likelihood

framework.2 However, this approach is known to be subject to the incidental parameter

issue, �rst studied by Neyman and Scott (1948) (see also the excellent survey by Lancaster

(2000)). Indeed, Arellano and Hahn (2007) note that for large-T large-N panels �it is

not less natural to talk of time-series �nite sample bias than of �xed-T inconsistency or

underidenti�cation.�This paper is in the same spirit.

To motivate the discussion, let Li(�; �i) = Li(�; �i; yi) be the likelihood function

for the ith individual (i = 1; :::; N) and L(�; �1; :::; �N ) be the joint likelihood. Here

yi is the data vector for the ith individual, � is the common parameter and �1; :::; �N

are the individual-speci�c parameters. The concentrated likelihood estimator of �i is

�̂i(�) = argmax�i lnLi(�; �i): If T is not su¢ ciently large, in the sense that the time-

series information is not su¢ cient, �̂i(�) will be subject to estimation error. This es-

timation error will be inherited by the corresponding concentrated likelihood function,

which will be incorrectly centred. Consequently, the resulting �xed-T; large-N estimator

�̂T = argmax� p limN!1 L(�; �̂1(�); :::; �̂N (�)) will also be biased. More importantly, even

in a large-T large-N setting, this incidental parameter bias will not vanish if T is small

relative to N:

The solution o¤ered by the analytical bias-reduction literature is based on character-

ising the �nite-sample bias of the concentrated likelihood estimator �̂ in increasing orders

1Examples of such datasets are cross-country data (Islam (1995)), growth data (Caselli, Esquivel and
Lefort (1996)), �rm data (e.g. studies of insider trading activity (Bester and Hansen (2009)), earnings
studies (Carro (2007), Fernández-Val (2009), Hospido (2010)) and data on hedge fund returns.

2See Hahn and Kuersteiner (2002, 2011), Hahn and Newey (2004), Arellano and Hahn (2006), and
Arellano and Bonhomme (2009).
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of 1=T and removing the leading O(1=T ) bias term. In other words, for

E[�̂ � �0] =
A

T
+O

�
1

T 2

�
;

if a consistent estimator of A; say Â = A+ op(1); exists, then ~� = �̂� Â=T will be a �rst-
order unbiased estimator, since E[~���0] = o(1=T ): For moderate T; the remaining o(1=T )

term is expected to be negligible. Based on this principle, the analytical bias-correction

methods attack the �rst order bias of either (i) the estimator �̂ (Hahn and Kuersteiner

(2002, 2011), Hahn and Newey (2004), Hahn and Moon (2006), Fernández-Val (2009));

or (ii) the likelihood (or the objective) function (Arellano and Hahn (2006), Arellano and

Bonhomme (2009), Bester and Hansen (2009) and Kristensen and Salanie (2010)); or (iii)

the score (or the estimating) function (Woutersen (2002), Arellano (2003), Carro (2007),

Dhaene and Jochmans (2011)).3 Of course, independent of the method used, the resulting

bias-corrected estimators will be equivalent to the �rst order. For reviews, see Arellano

and Hahn (2007) and, more recently, Arellano and Bonhomme (2011).

The aforementioned literature is in general based on the assumption of cross-section

independence.4 However, many interesting macroeconomic and �nancial panels will almost

certainly violate this assumption. This can, for example, be due to a common shock

process which hits all individuals simultaneously, but with di¤erent magnitudes, as in the

case of factor models. The main contribution of this study is extension of bias reduction

in nonlinear dynamic panels to the case of cross-section dependence.

In a recent study, Arellano and Bonhomme (2009) consider the integrated likelihood

function as a unifying framework for likelihood-based estimation. This is given by

`Ii (�) =
1

T
log

Z
�i2�i

Li (�; �i)�i (�ij�) d�i; (1)

where �i (�ij�) is some weight or, from a Bayesian perspective, prior function. For example,
if �i(�ij�) = 1 for �i = �̂i(�) and zero otherwise, the resulting function is the concentrated

likelihood function. Similarly, one can also obtain the random e¤ect or Bayesian type

likelihoods (see Arellano and Bonhomme (2009)). Under time-series and cross-section

independence, they propose a class of weights/priors that removes the �rst-order bias of

this likelihood function; the robust priors. In this paper, I extend their analysis and study

the bias properties of (1) under serial and cross-section dependence to obtain likelihood-

based general characterisations of extra bias terms. The theoretical analysis reveals that,

3 It must be noted that analytical bias-correction methods constitute part of the literature only. The
statistics literature includes many in�uential studies of the incidental parameter issue and possible bias-
reduction methods. Two mile-stones in this area are the works by Barndor¤-Nielsen (1983) and Cox
and Reid (1987) who consider the modi�ed pro�le and approximate conditional likelihoods, respectively.
Moreover, numerical, as opposed to analytical, corrections, such as the panel jackknife and bootstrap
adjustment, can also be employed. See, for example, Hahn and Newey (2004), Pace and Salvan (2006) and
Dhaene and Jochmans (2010).

4For examples of studies outside this literature, where bias in the presence of a factor structure is
analysed, see Phillips and Sul (2007) and Bai (2009, 2012).
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time-series dependence leads to an extra O(1=T 3=2) incidental parameter bias term which

is not present under serial independence. Then, without specifying an explicit structure for

cross-section dependence, I consider a �exible structure where the speed of convergence

is assumed to be
p
N�T where � varies between 0 and 1: Therefore, the two extremes

are
p
NT -convergence (cross-section independence) and

p
T -convergence (cross-section

dependence of strong type). Intuitively, the �rst polar case corresponds to independence or

weak dependence across cross-section, while in the latter case dependence is so strong that

cross-sectional variation does not contribute to convergence at all.5 Hence, � measures the

strength of cross-section dependence. In a recent study, Bailey, Kapetanios and Pesaran

(2012) measure cross-section dependence in the same fashion. The theoretical analysis

reveals that, depending on the strength of cross-section dependence, a second type of

bias term, due to cross-section dependence, emerges. This extra bias is not related to

the incidental parameter issue and so, it has to be corrected for separately. Based on

these �ndings it is shown that, if the cross-section dimension is allowed to contribute

to convergence at a mild rate, then the cross-section dependence induced bias becomes

O(1=T 3=2): Consequently, the O(1=T ) bias of the estimator will be identical to the one

characterised by Arellano and Bonhomme (2009) and their robust priors can be used for

bias correction, despite the presence of cross-section dependence:

Next, I consider the particular setting of spatial dependence and clustered individuals.

This part of the paper mainly aims to establish a connection between the analytical bias

reduction and spatial dependence/clustering literatures. Unlike the usual clustering setting

where independence between clusters is assumed, the spatial dependence framework allows

for some weak dependence between clusters, thus generating richer interaction possibilities.

Interestingly, it turns out that the extra bias due to cross-section dependence becomes

O(1=T ) when the number of clusters and the number of members of each cluster increase

at the rate O(
p
N):

It must be noted that this study is based on a pseudo-likelihood function, called the

�composite-likelihood�function (see Lindsay (1988), Cox and Reid (2004) and Varin Reid

and Firth (2011)). Estimation by maximum likelihood under cross-section dependence

and time-series heteroskedasticity requires speci�cation of an (N �N) covariance matrix
at each t. This entails complications in both computation (inversion of a large dimen-

sional matrix) and statistical modelling, even when N is modestly large. The composite-

likelihood method is used here to side-step these issues, which is based on the idea of

approximating the joint density by averaging univariate marginal densities. This is equiv-

alent to treating data as if there were no cross-section dependence. Engle, Shephard and

Sheppard (2008) show that under mild conditions this ensures consistency, possibly at

some e¢ ciency loss. More sophisticated methods for dealing with cross-section depen-

dence, notably factor modelling6, can be employed; but this is beyond the scope of this

5This second case is not very realistic but it nevertheless provides a useful tool for understanding the
e¤ects of dependence on small sample bias.

6For recent important examples of this literature, see, among others, Bai and Ng (2002, 2004), Phillips
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study and not pursued here. In addition, intuition on the e¤ect of cross-section depen-

dence on bias can still be understood in a pseudo-likelihood setting. Importantly, results

of this study also shed light on the properties of estimators under neglected cross-section

dependence.

All theoretical results are given in terms of likelihood-based general expressions and

are not model speci�c. Therefore, the bias characterisations and asymptotic expansions

derived in this paper do potentially apply to a wide array of nonlinear dynamic panel

models. The nonlinear dynamic panel application considered here is estimation of �nancial

volatility in a panel (rather than the traditional time-series) setting. This is based on the

Generalised Autoregressive Conditional Heteroskedasticity (GARCH) type models (Engle

(1982) and Bollerslev (1986)). In general, consistent GARCH estimation by standard

time-series approaches requires around 1,000-1,500 observations for the small sample bias

to vanish. However, simulation analysis reveals that when a bias-corrected panel approach

is employed, a substantial portion of the small-sample bias is removed with as little as 150-

200 time-series observations. This is a signi�cant improvement. As such, suggesting a new

approach for volatility modelling in small samples is the main contribution of this paper

to the �eld of �nancial econometrics. In line with the rest of the literature, bias reduction

does not come at the cost of higher variance. In fact, variance is reduced. Simulation

results further indicate that the e¤ect of cross-section dependence on bias is negligible.

However, compared to the case of cross-section independence, it leads to in�ated estimator

variance.

Finally, two empirical illustrations are considered. The �rst one is a comparison of out-

of-sample predictive ability using stock market data, where the bias-corrected GARCH

panel model attains superior forecasting performance in comparison to its alternatives.

This is followed by an analysis of monthly hedge fund volatility. This type of data are

a typical example of short panels, as fund returns are recorded at monthly frequency

and observations are available for the last 18 years only. The results indicate that funds�

volatility characteristics show variation both across and, more interestingly, within di¤er-

ent investment strategies. Furthermore, sample distributions of volatility across funds are

asymmetric, skewed to the right and react to major economic events, such as the credit

crunch. To the best of my knowledge, this is the �rst example of GARCH-based hedge

fund volatility modelling in the literature.

An indirect and appealing feature of modelling conditionally heteroskedastic errors in

a panel framework is that it o¤ers a mechanism to induce time-varying heterogeneity in

panel data.7 One possibility to control for time-varying common shocks is to assume year

e¤ects. However, without further modelling, this implies that all individuals are a¤ected

identically by the common shocks. The GARCH panel approach o¤ers an alternative and

and Sul (2003), Pesaran (2006), Bai (2009), Chudik Pesaran and Tosetti (2011), Kapetanios Pesaran and
Yamagata (2011) and Pesaran and Tosetti (2011).

7Fernández-Val and Vella (2009) list possible examples where both individual-speci�c (time-invariant)
and time-varying heterogeneity is present and analyse bias-reduction under this setting.
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�exible mechanism through which time-varying heteroskedasticity can be induced without

making such assumptions. Of course, the number of observations required for GARCH es-

timation, even after bias-reduction, might be too large for some microeconometric datasets.

However, this study makes an initial step towards a more �exible heterogeneity structure.

The rest of this study is organised as follows: Section 2 introduces the notation and

brie�y discusses relevant concepts. Key assumptions are listed and discussed in Section

3. The main theoretical results concerning the bias of the integrated likelihood are given

in Sections 4 and 5. In Section 6, the speci�c case of spatial dependence for clustered

individuals is considered. The Panel GARCH application is introduced in Section 7,

where a detailed simulation analysis is provided to investigate the small sample properties

and the bias-reduction performance of the integrated likelihood method. This is followed

by two empirical applications in Section 8. Section 9 concludes. Proofs and additional

discussions are given in the Appendix.

2 Main Concepts and Notation

Following the convention as in e.g. Arellano and Hahn (2006) and Hahn and Kuersteiner

(2011), de�ne some random variable xit indexed by individuals, i; and time, t where

i = 1; :::; N and t = 1; :::; T: Let � be the P -dimensional common parameter of interest and

�i be the scalar individual-speci�c parameter for the ith individual. The corresponding

(pseudo) true parameter values are given by �0 and �i0: Let, furthermore, 'it(�; �i) =

'(�; �i;xit) be some criterion function. This setting is general in the sense that one

can consider a variable of interest yit such that xit = yit and 'it(�; �i) = `(�; �i;xit) =

`(�; �i; yit) or xit = (yit; yi;t�1; :::; yi;t�q) and 'it(�; �i) = `(�; �i; yitjyi;t�1; :::; yi;t�q) where
`(�) is the (conditional) log-likelihood function (Arellano and Hahn (2006)).

Under scrutiny is the following estimator:

(�̂; �̂1; :::; �̂N ) = arg max
�;�1;:::;�n

1

NT

NX
i=1

TX
t=1

'it(�; �i): (2)

The �rst and foremost assumption is that 'it(�) is an appropriate function in the sense that
for T ! 1 and N �xed, (�̂; �̂1; :::; �̂N ) is consistent for (�0; �10; :::; �N0). In other words,

the researcher already has a valid, consistent estimator available. The problem is that the

sample is not large enough and the estimator is prone to small-sample bias. Importantly, in

the case of cross-section dependence, (2) has a composite likelihood function interpretation,

where the joint density is approximated by the average of marginal densities. Engle,

Shephard and Sheppard (2008) consider a similar approach where they approximate the

joint density by combining many bivariate marginal densities and their consistency results

can easily be adopted to the framework of this study.

This setting has a general scope because it is based on a generic (possibly pseudo)

likelihood function, with no particular model in mind. As such the objective function may
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exhibit non-linearities and/or a dynamic structure. Therefore, the bias characterisations

and asymptotic expansions derived in this paper potentially apply to a wide array of non-

linear dynamic panel models and provide important insights into bias reduction under

cross-section dependence. Of course, when the objective function is based on a pseudo-

likelihood, some careful thinking might be required on a case-by-case basis. For example,

the quasi maximum likelihood theory for the GARCH model is well-established (Bollerslev

and Wooldridge (1992)) but for a di¤erent non-linear dynamic model there may be issues.

The rest of the analysis will be based on the likelihood notation, without loss of gen-

erality. De�ne

`iT (�; �i) =
1

T

TX
t=1

`it (�; �i) , `NT (�; �) =
1

N

NX
i=1

`iT (�; �i);

`�iT (�; �i) =
@`iT (�; �i)

@�i
; `��iT (�; �i) =

@2`iT (�; �i)

@�2i
etc.

Hence, � appearing as a superscript denotes di¤erentiation with respect to �i: The operator

r�(k) is used to take the k
th order total derivative with respect to �: For example,

r�(2)`iT (�; �i) =
d2`iT (�; �i)

d�d�0
; r�(2)`

�
iT (�; �i) =

d2`�iT (�; �i)

d�d�0
etc.

The centred likelihood derivatives with respect to �i are de�ned as

V ��iT (�; �i) = `��iT (�; �i)� E[`��iT (�; �i)]; V ���iT (�; �i) = `���iT (�; �i)� E[`���iT (�; �i)] etc.

Unless otherwise noted, all expectations are taken with respect to the underlying true

density evaluated at (�0; �10; :::; �N0):

The bias-reduction analysis utilises three di¤erent likelihood functions. These are the

concentrated, integrated and target likelihood functions. The most familiar of these is the

concentrated likelihood, given by

`ciT (�) = `iT (�; �̂i(�));

where �̂i(�) = argmax
�i

TX
t=1

`it(�; �i) and �̂ = argmax
�

NX
i=1

TX
t=1

`it(�; �̂i(�)):

The main idea is to centre the likelihood function at the likelihood estimator for �i; for

some given value of �: In large samples this estimator has good properties.8 However,

when T is not su¢ ciently large, �̂i(�) is estimated with error. As a result, the likelihood is

concentrated with respect to a biased value for �i0. Crucially, the estimation error (or the

small-sample bias) in �̂i(�) is accumulated across strata, and contaminates the estimation

of �0 (see, e.g., McCullagh and Tibshirani (1990) and Sartori (2003)). Consequently, �̂

8See Barndor¤-Nielsen and Cox (1994) and Severini (2000) for excellent textbook treatments of likeli-
hood based estimation.
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is inconsistent for �0. More formally, �̂T = argmax� p limN!1(NT )�1`NT (�; �̂i(�)) 6= �0:

This is the well-known incidental parameter issue, �rst investigated by Neyman and Scott

(1948). In the case of the dynamic autoregressive panel model, this is also widely known

as the Nickell bias due to Nickell (1981).

A possible solution is to integrate �i out from the density function and to obtain a new

density, free of the nuisance parameter. This is the integrated likelihood approach which,

for a given weighting scheme �i (�ij�) ; returns

`IiT (�) =
1

T
ln

Z
exp [T`iT (�; �i)]�i (�ij�) d�i:

The choice of weights/priors, �i (�ij�) ; is key to successfully removing the incidental para-
meter bias. Following Arellano and Bonhomme (2009), who investigate this method in the

case of non-linear dynamic panel models under time-series and cross-section independence,

a robust prior is de�ned as the prior that removes the �rst-order bias of the pro�le score.

Speci�cation of these robust priors is the essence of this study.

One might be tempted to think that, since `IiT (�) is not a function of �i anymore, it does

not su¤er from the incidental parameter bias. However, if the correct, or robust, weighting

scheme is not employed, then the resulting likelihood function will still be wrongly centred.

To give an example, observe that if

�i (�ij�) =
(
1 for �i = �̂i(�)

0 for �i 6= �̂i(�)
;

then `IiT (�) is still free of �i but it coincides with `iT (�; �̂i(�)); the concentrated likelihood

function, which is incorrectly centred.

It must be underlined that this study follows a frequentist approach in the sense

that the speci�cation of the robust prior depends entirely on the characterisation of the

incidental parameter bias. Therefore, no subjective prior has to be speci�ed and one

can indeed refer to the robust prior as a robust weighting scheme. By way of analogy,

�i (�ij�) is used as a tool (or as a �vacuum cleaner�) to mop up the �rst-order bias of the

integrated likelihood function: It is of course also possible to use a subjective prior, but

this approach is not pursued here. Indeed, bias correction by integrated likelihood is a

common approach in the Bayesian literature. More importantly, recent research reveals

that there are important links between integrated likelihood estimation and the traditional

bias reduction approaches employed in the frequentist literature. In particular, Severini

(1999) shows that the adjusted pro�le likelihood function (Cox and Reid (1987)) is third-

order asymptotically Bayes. Moreover, he also mentions that since the pro�le log-likelihood

and the modi�ed pro�le log-likelihood (Barndor¤-Nielsen (1983)) functions are locally

equivalent to second order, the latter is asymptotically Bayesian to second order, as well.

The adjusted and modi�ed pro�le log-likelihood functions are important contributions in

the frequentist bias reduction literature and therefore, these observations imply a natural
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connection between the frequentist and Bayesian approaches. In addition, Severini (2007)

also provides an analysis of the issue of selecting the priors that would ensure that the

integrated likelihood is appropriate under the frequentist approach, as well. Finally, in a

recent work, Severini (2010) investigates the integrated log-likelihood ratio statistic and

compares it to the standard log-likelihood ratio statistic. All these contributions provide

strong theoretical justi�cation for the use of the integrated likelihood method within the

frequentist framework.

The aim then is to correct the bias of the integrated likelihood function with respect

to an appropriate benchmark function. This benchmark is given by the target likelihood

function,

`iT (�; ��iT (�)); where ��iT (�) = argmax
�i

1

T

TX
t=1

E�0;�i0 [`it(�; �i)] for some �xed �:

Here, E�0;�i0 [�] is the expectation based on the underlying density evaluated at �0 and
�i0: This is an appropriate benchmark as the curve de�ned by

�
�; ��iT (�)

�
is referred to as

the �least favourable curve�in the parameter space, after Stein (1956). In the likelihood

setting, this is because the expected information for �, obtained by using `it(�0; ��iT (�0));

is equal to the partial expected information. The latter, in turn, coincides with the

inverse of the Cramér-Rao lower bound. Hence, the target likelihood used here is the

�least favourable� benchmark to compare the concentrated likelihood to.9 Importantly,

this is an infeasible benchmark as ��iT (�) is based on �0 and �i0 (through calculation of

the expectation), as well as �: Nevertheless, it still is a useful benchmark to analyse the

theoretical properties of the incidental parameter bias.

In what follows, the following notational convention will be used for sake of conciseness:

�̂i and ��i are used as shorthand for �̂i(�) and ��iT (�); therefore, the dependence of ��iT (�)

on T will be implicit. Moreover, whenever a likelihood function is evaluated at (�; ��i(�));

the argument will be omitted. Also, if the likelihood is evaluated at ( ; ��i( )) for some

 6= �; then the likelihood is written as a function of  only. Speci�cally,

`it = `it(�; ��i(�)); `iT = `iT (�; ��i(�)); `NT = `NT (�; ��(�));

`it(�0) = `it(�0; ��i(�0)); `iT (�0) = `iT (�0; ��i(�0)); `NT (�0) = `NT (�0; ��(�0));

where ��(�) = (��1(�); :::; ��N (�)): The same applies to functions such as V ��iT (�; ��i (�));

`�NT (�;
��i (�)) etc. Lastly, E[�] and V ar (�) are used as shorthand for E�0;�i0 [�] and V ar�0;�i0 (�) ;

the expectation and variance evaluated at the true parameter values, respectively.

9See Severini and Wong (1992) and Severini (2000, Chapter 4). A lucid discussion is given by Pace and
Salvan (2006). In particular, the target likelihood is a proper likelihood and is maximised at �0:
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3 Assumptions

As outlined in Section 1, the bias reduction strategy is based on obtaining an analytical

expression for the incidental parameter bias of order O(T�1): To do this, �rst the small

sample bias of the integrated likelihood function with respect to the benchmark infeasible

target likelihood functions is derived, by using large-T asymptotic expansions. Based on

this, it is straightforward to obtain the characterisation of the robust prior which removes

the �rst-order bias of the score function. The eventual objective, of course, is to correct

the bias of the integrated likelihood estimator. In the cross-section independence case, it

is known that both bias-corrected likelihood and bias-corrected score functions imply bias

corrected estimators (Arellano and Hahn (2007)). However, as will be shown in Section 5,

it is possible that this does not hold anymore in the presence of cross-section dependence.

Nevertheless, from an intuitive perspective, it makes more sense to attack the bias of the

score function �rst (rather than the bias of the estimator itself) as this is the process which

produces the estimator.

Arellano and Bonhomme (2009) have already studied the time-series and cross-section

independence case, so results presented in this section extend their analysis to time-series

dependence, which is assumed to be of mixing type. Formal de�nitions of these concepts

are given in De�nition A.1 in the Appendix. The mixing concept is commonly used to

impose weak dependence on economic time-series.10 A convenient property of mixing

sequences is that for any measureable function g(�); if a sequence (xit; xi;t�1; xi;t�2; :::) is
mixing, then g(xit; xi;t�1; :::; xi;t�� ) is also mixing of the same size (see Davidson (1994)

and White (2001)).

The assumptions are given next. In what follows, j1; :::; jk 2 f1; 2; :::; Pg:

Assumption 3.1 N;T !1 jointly and, for 0 < c <1; N=T ! c:

Assumption 3.2 fxitg is an ��mixing sequence for each i: Moreover, for all i and t the
mixing coe¢ cients are of size �r=(r � 2) for some r > 2.

Assumption 3.3 `it(�; �i) 2 C8 for all i; t; where Cc is the class of functions whose
derivatives up to and including order c are continuous.

Assumption 3.4 The support of �i (�ij�) contains an open neighbourhood of the true
parameters �i0 and �0:

Assumption 3.5 � and �i belong to the interior of � and �i; respectively, where � � RP

and �i � R are compact and convex parameter spaces.

Assumption 3.6 For each � 2 �; `iT (�; �i) has a unique maximum at �̂i(�) for all i:

10See Davidson (1994) and White (2001) for a detailed treatment of mixing sequences from an econo-
metric perspective. A recent survey, which includes many other types of mixing processes, is given by
Bradley (2005). The classical reference is Doukhan (1994).
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Assumption 3.7 As T !1; supi sup�2�
����̂i(�)� ��iT (�)��� = Op(T

�1=2):

Assumption 3.8 De�ne

Zm;kit (�; �i) =
d(m+k)

d�mi d�j1 :::d�jk
`it(�; �i):

For all combinations of m 2 f0; 1; 2; 3g and k 2 f0; 1; 2; 3; 4; 5g; there exist individual
functions Mit(�); possibly dependent on xit and �; such that���Zm;kit (�; ��i(�))

��� �Mit(�);

where supi;t sup�2�Mit(�) < 1: Moreover, E[`��iT (�; ��i(�))] and E[r�(2)`NT (�; ��i(�))] are
non-singular for all i; T;N and � 2 �:

Assumption 3.9 For all combinations of m 2 f0; 1g and k 2 f0; 1; 2; 3; 4g there exist
individual functions Hi;T (�); possibly dependent on fxi1; :::; xiT g and �, such that����� d(m+k)

d�mi d�j1 :::d�jk
ln�i(��iT (�)j�)

����� � Hi;T (�);

where supi;T sup�2�Hi;T (�) <1.

Assumption 3.10 De�ne the zero-mean random variables �Zm;kit (�; �i) = Zm;kit (�; �i) �
E[Zm;kit (�; �i)]: For all combinations of m 2 f1; 2g and k 2 f0; 1; 2; 3; 4g

sup
i;t
sup
�2�

E
���Zm;kit (�; ��i(�))

���r <1,
and inf

i
inf
�
V ar

 
1p
T

TX
t=1

Zm;kit (�; ��i(�))

!
> 0 as T !1:

The same also holds for (m; k) = (3; 0):

Assumption 3.11 As N;T !1;

r�`NT (�0; ��(�0)) = Op

�
1p
N�1T

�
;

r�(2)`NT (�0; ��(�0))� E[r�(2)`NT (�0; ��(�0))] = Op

�
1p
N�2T

�
;

r�(3)`NT (�0; ��(�0))� E[r�(j)`NT (�0; ��(�0))] = Op

�
1p
N�3T

�
;

where 0 � �1; �2; �3 � 1:

Assumption 3.1 implies that N and T converge to in�nity at the same rate, hence a

large-T large-N setting is considered. This would, for example, be appropriate for �nancial

10



panels where T andN are of comparable magnitudes. In addition, as mentioned previously,

this setting has also been considered frequently for microeconometric applications.

Assumption 3.2 characterises the structure of time-series dependence. As mentioned

previously, any measurable function of a �nite sequence of xit will retain all mixing and size

properties of xit: Moreover, it is also well-known that continuous functions are measurable

(see, for example, Theorem 13.2 in Billingsley (1995)). By Assumption 3.3, all derivatives

of the objective function up to and including the eighth order are guaranteed to exist and

to be continuous.11 Consequently, Assumptions 3.2 and 3.3 together imply that all such

likelihood derivatives are �-mixing and are of the same size as fxitg: The virtue of this
result is that mixing LLNs and CLTs can be applied to (properly normalised) averages of

the derivatives of the objective function, which appear naturally in asymptotic expansions.

The existence of these LLNs and CLTs is ensured by Assumption 3.10 which states that the

necessary moment conditions hold. The proofs for the results given in Section 4 use this

property heavily. It is important to underline that this idea would generalise to any type

of mixing, although di¤erent types of mixing would require di¤erent moment conditions.

Hence, �-mixing is assumed for illustration purposes only and the proofs can be adapted

to a di¤erent type of mixing.

Assumption 3.4 rules out cases where the prior is not de�ned at the true parame-

ter values, (�i0; �0): In other words, the possibility of the integrated likelihood not being

de�ned at the true parameter values is assumed away. Assumption 3.5 is a standard reg-

ularity condition on the parameter space. Assumption 3.6 is required for the existence

of a Laplace approximation to the integrated likelihood function and is a mild condi-

tion. The Laplace approximation is used to obtain a linear approximation to the integral.

Assumption 3.7 controls the convergence rate of �̂i(�) to ��iT (�); the benchmark �least-

favourable�estimator: Intuitively, this ensures that the concentrated likelihood estimator

is never �too�far away from the benchmark estimator. Assumption 3.8 simply guarantees

that the likelihood derivatives that appear in the expansions exist and are �nite. The

parallel conditions regarding the prior function are given in Assumption 3.9.

Assumption 3.11 is the most important assumption that implicitly characterises the

nature of cross-section dependence. Therefore, this is a good moment to elaborate on how

cross-section dependence is integrated into the analysis. First, observe that all expressions

in Assumption 3.11 are likelihood derivatives and are zero mean (either by themselves

or by centering): By the previous heuristic discussion, the time-series averages of the

considered likelihood derivatives will all be Op(T�1=2) due to existence of mixing CLTs.

However, when these terms are averaged across cross-section as well, it is not clear what

the convergence rate will be. One idea is to consider two polar cases:

Case 3.1 Cross-section independence, which, under standard regularity conditions, im-
plies

p
NT -convergence.

11This is standard and would generally be assumed implicitly.
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Case 3.2 Cross-section dependence of strong type, such that there is no gain from cross-

section size. Hence,
p
T -convergence.

Case 3.1 is the setting considered invariably in the analytical bias reduction literature.

Case 3.2, on the other hand, is the worst-case scenario, where cross-section dependence

can be so strong that the cross-section size does not contribute to rate of convergence.

A simple example is the extreme case where all individuals in the panel are identical.

Clearly, in terms of the information it contains, this panel is identical to a single time-

series implying
p
T convergence. In reality this will not be the case, but cross-section

dependence can still be so strong that each new individual brings a minimal amount of

new information. Following Engle, Shephard and Sheppard (2008), who also use this

approach to characterise cross-section dependence, a di¤erent way to put this would be to

say that there is no LLN in the cross-section: Of course, in practice one would expect at

least some contribution from N . However,
p
T -convergence provides a good benchmark to

understand whether and how cross-section dependence might a¤ect the �rst-order bias if

worst comes to worst. This idea is integrated into the analysis by allowing the convergence

rates for the cross-sectional averages of likelihood terms to be de�ned in a �exible way,

where 0 � �1; �2; �3 � 1. On the one hand, �1; �2 and �3 can be equal to zero, implyingp
T -convergence for all terms. On the other hand, the usual

p
NT rate is achieved for

these terms when �1 = �2 = �3 = 1. Bailey, Kapetanios and Pesaran (2012) use a

similar approach and de�ne the �exponent of cross-sectional dependence�to measure the

strength of cross-section dependence. The parameters �i; i = 1; 2; 3 are closely related to

the exponent of cross-sectional dependence.

4 Bias of the Integrated Likelihood in the Presence of

Time-Series Dependence

The �rst main result of this study, which characterises the bias of the integrated likelihood

function in the presence of time-series dependence is presented below.

Theorem 4.1 Under Assumptions 3.1-3.8,

E�0;�i0
�
`IiT (�)� �̀iT (�)

�
= C +

B(1)iT (�)
T

+
B(2)iT (�)
T 3=2

+O

�
1

T 2

�
; (3)

where

B(1)iT (�) =
1

2
fE�0;�i0 [�`��iT ]g�1E�0;�i0 [T (`�iT )2]

�1
2
lnE�0;�i0 [�`��iT ] + ln�i(��ij�); (4)

B(2)iT (�) = T 3=2
1

2

E�0;�i0
�
V ��iT (`

�
iT )

2
�

fE�0;�i0 [`��iT ]g2
� T 3=2 1

6

E�0;�i0 [(`�iT )3]E�0;�i0 [`���iT ]

fE�0;�i0 [`��iT ]g3
; (5)
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and C = (2T )�1 ln
�
2�T�1

�
:

Several remarks are in order. Notice that by standard arguments B(1)i (�) and B(2)i (�)

are both O(1): Theorem 4.1 is di¤erent from the corresponding Theorem 1 in Arellano and

Bonhomme (2009) in that the bias of the integrated likelihood includes an extra O(T�3=2)

term given by B(2)iT (�) =T 3=2: This is due to the presence of time-series dependence. If, on
the other hand, the likelihood derivatives are independent across t, then, B(2)iT (�) =T 3=2 is
actually O(T�2): Another contribution is the derivation of a likelihood based characteri-

sation of this extra bias term, given in (5).

It must be underlined that, as far as �rst-order bias reduction is concerned, any o(T�1)

bias term would be considered negligible in the literature. So, presence of the extra

O(T�3=2) does not pose extra di¢ culties in terms of bias reduction. However, for higher

order bias correction, these results would be very useful. Note that all bias terms involve

expectations calculated at the true parameter values, which can easily be estimated by

using the sample means.

The more interesting feature of Theorem 4.1 is that the �rst order bias term, B(1)iT (�) =T
is identical to the one found by Arellano and Bonhomme (2009). Then, given that the

sole interest is in correcting the O(T�1) bias, this result implies that the robust priors

suggested by Arellano and Bonhomme (2009) are still valid under time-series dependence,

assuming cross-section independence for the moment.

The robust priors are obtained by choosing �i(�ij�) in such a way that it cancels the
other bias terms. By analogy, it can be likened to a �vacuum cleaner�which is used to

�clean�the bias terms. By taking the derivative of (3) with respect to �; one can derive

an expression for �i(��ij�) that removes the �rst order bias of the score. The speci�cations
of the bias-reducing priors that correct the O(T�1) bias term only and both the O(T�1)

and O(T�3=2) bias terms are given below.

Corollary 4.2 The robust prior that cancels the bias term of order O(T�1) only is given

by

�Ri (�ij�) _ bE[�`��iT (�; �i)]�bEf[`�iT (�; �i)]2g��1=2 (P1)

which is valid in a likelihood setting while

�Ri (�ij�) _ fbE[�`��iT (�; �i)]g1=2
� exp

�
�T
2
fbE[�`��iT (�; �i)]g�1bEf[`�iT (�; �i)]2g� ; (P2)

is valid in pseudo-likelihood settings, as well. Under the same assumptions, the speci�-

cation of the robust prior that cancels bias terms of order both O(T�1) and O(T�3=2) is
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given by

�Ri (�ij�) _ fbE[�`��iT (�; �i)]g1=2
� exp

"
� T

2

 bEf[`�iT (�; �i)]2gbE[�`��iT (�; �i)]
+

p
T bE �V ��iT (`�i )2�

fbE[�`��iT (�; �i)]g2 � 13
p
T bE[(`�iT )3]bE[`���iT ]

fbE[�`��iT (�; �i)]g3
!#

: (P2*)

Priors (P1), (P2) and (P2*) follow directly from Theorem 4.1. In particular, the

derivation of Priors (P1) and (P2) is given in Arellano and Bonhomme (2009). In addition,

proofs of (P2) and (P2*) are analogous and follow by simple inspection. See Arellano and

Bonhomme (2009) for the proofs. Derivation of Prior (P1) is slightly more involved as it

relies on a simpli�cation by Pace and Salvan (1996) based on the information equality,

which holds under correct parametric assumptions only. Therefore, Prior (P1) is valid in

a likelihood setting while Priors (P2) and (P2*) are more suitable for empirical analysis

where parametric assumptions are not guaranteed to be correct.

Finally, note that (3) is a large-T expansions for �xed i: Therefore, cross-section de-

pendence has not come into play yet. To obtain the �rst-order bias of the integrated

likelihood estimator, a double asymptotic expansions letting N ! 1; as well, is needed.
This is done next.

5 Bias of the Integrated Likelihood Estimator in the

Presence of Cross-Section Dependence

The case of cross-section dependence has so far not been analysed in the analytical bias-

reduction literature.12 The question of interest is whether cross-section dependence in-

troduces extra bias terms in addition to B(1)iT (�) =T: As discussed in Section 3, under
cross-section independence one would, under regularity conditions, usually have

p
NT -

convergence. However, when cross-section dependence is present, convergence will most

likely be at a slower rate. This idea manifests itself in Assumption 3.11 in the form of

zero-mean likelihood derivatives converging at (possibly) slower rates.

The implication of slower convergence rates on the mechanics of bias derivations is that

higher order expansions are required in order to characterise the bias. More speci�cally,

under
p
NT -convergence, at most second order Taylor expansions are su¢ cient for bias

derivations. Here, on the other hand, fourth order expansions for estimators of both �i
and � have to be obtained in order to characterise the �rst-order bias. This is because the

terms that appear in expansions converge at a slower rate and so higher order expansions

are required to characterise the small sample behaviour up to the O(T�2) remainder term.

12One important exception is the work by Phillips and Sul (2007) who consider the speci�c case of a
dynamic autoregressive panel model under neglected cross-section dependence and calculate the probability
limit of the dynamic parameter. Hence, their analysis extends the Nickell (1981) bias.
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An indirect contribution of this study then is derivation of higher order likelihood-based

expansions, which can be used for purposes other than bias reduction.

Remember that � is P -dimensional. This introduces no conceptual di¢ culties, but

it makes the algebra of the asymptotic expansions more complicated. This is because

likelihood derivatives with respect to � are now possibly multi-dimensional arrays. To

overcome this issue, the proofs are based on the index notation and the Einstein summa-

tion convention. Basically, these notational conventions allow multi-dimensional arrays

to be manipulated algebraically in the same way as scalars. The �nal result then can

be translated into matrix notation. An overview of these techniques is provided in the

Mathematical Appendix.

The following de�nitions are used in characterising the bias of the integrated likelihood

estimator:

�̂IL = argmax
�2�

1

N

NX
i=1

`IiT (�) ; S = r�`NT (�0) =
�
`�NT (�0)�

E[`��NT (�0)]
E[`��NT (�0)]

`�NT (�0)

�
;

H = r��`NT (�0) ; � = E[H];

Zj = E
�
r��

d`NT (�0)

d�j

���
�=�0

�
; and M =

2664
S0��1Z1��1S

...

S0��1ZD�
�1S

3775 ;
where j 2 f1; :::; Pg: Elsewhere in the literature, S is also referred to as the projected
score. H is the Hessian matrix with respect to � while Z is related to the third-order

derivatives: The bias of the integrated likelihood estimator is given in the next theorem,

which is the second main theoretical contribution of this study.

Theorem 5.1 Under Assumptions 3.1-3.11

(�̂IL � �0) = ���1S

���1 1
N

NX
i=1

r�

(
1

T
lnE[`��iT (�; ��i(�))]

+
1

T
ln�i(��i(�)j�)�

�
`�iT (�;

��i(�))
�2

E[`��iT (�; ��i(�))]

)�����
�=�0

+��1 (H � �)S��1 � 1
2
��1M +Op

�
1

T 3=2

�
: (6)

The �rst term on the right-hand side of (6) is the average projected score with respect

to � and, if a CLT for this term exists, then this term generates the convergence in distri-

bution result for �̂IL. Whether a CLT exists or not is crucial for inference, but not for bias

reduction; all that matters is the convergence rate. The second term contains the now fa-

miliar term of the �rst-order incidental parameter bias of the score. Remember that if the

robust prior �Ri (�) is used to construct T�1 ln�i(��i(�)j�); then by the de�nition of the ro-
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bust priors, the expectation of this term is O(T�3=2). The orders of magnitude of the third

and fourth terms are determined by Assumption 3.11 and these are Op(N�(�1+�2)=2T�1)

and Op(N��1T�1); respectively. The below corollary follows immediately.

Corollary 5.2 When the robust prior, �Ri
�
��i(�0)j�0

�
; is used,

E[�̂IL � �0] = ��1E[(H � �)S]��1 � 1
2
��1E[M ] +O

�
1

T 3=2

�
;

= O

�
1

N (�1+�2)=2T

�
+O

�
1

N�1T

�
+O

�
1

T 3=2

�
:

Theorem 5.1 and Corollary 5.2 reveal important insights about the �rst order bias

under both time-series and cross-section dependence. First and foremost, there are two

types of small sample bias. The �rst type is the standard incidental parameter bias which

is captured by the second and third lines in (6) and is corrected by the robust prior.

The (potential) second type of bias is due to the third and fourth terms in (6). Whether

this second type of bias will matter directly depends on �1 and �2; or equivalently, on

the contribution of N to the rate of convergence of the score and Hessian with respect

to �: Crucially, this is not an incidental parameter bias term. Instead, this type of bias

arises only due to the (possibly) slower rates of convergence. However, depending on the

particular values of �1 and �2 this term may not matter after all. This is summarised in

the next corollary.

Corollary 5.3 If �1 and �2 are assumed to be such that

1=2 � �1 � 1; 0 � �2 � 1 and 1 � �1 + �2 � 2; (7)

then, using the robust prior gives

E[�̂IL � �0] = O

�
1

T 3=2

�
:

Hence, (7) characterises the setting in which the robust priors of Arellano and Bonhomme

(2009) are still valid, despite the presence of time-series and cross-section dependence.

If, in addition, a Central Limit Theorem for S = r�`NT (�0) exists such that,

p
N�1T

1

NT

NX
i=1

TX
t=1

r�`it(�0; ��i(�0))
d! N (0;
);

where 
 is some asymptotic covariance matrix, then by (6)

p
N�1T (�̂IL � �0)

d! N (ĉB̂; ~
);

where ĉ = limN;T!1
p
N�1=T 2; B̂ = O (1) and ~
 is some asymptotic covariance matrix.
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Corollary 5.3 can be con�rmed by inspection, using the results of Theorem 5.1 and

Corollary 5.2. The �rst part of Corollary 5.3 gives the conditions under which the Arellano-

Bonhomme robust priors are still valid, even under time-series and cross-section depen-

dence. The second part, where the existence of a CLT is assumed, reveals that the as-

ymptotic distribution will correctly be centred at zero if limN;T!1
p
N�1=T 2 = 0: For

example, for �1 = 1=2; this suggests that N can grow at the same rate as T 3; a realistic

case for �nancial panels.

It is also worth mentioning intuitively that when �1 = 0; if a CLT exists for S such

that
p
TS

d! N (0; �); then p
T (�̂IL � �0)

d! N (~c ~B; �);

where again ~B = O(1) but this time ~c = limN;T!1
p
1=T : In other words, p limT!1

E[�̂IL� �0] = 0 independent of at what rate N and T go to in�nity. This is a very strange

implication, because it suggests that the rate at which N and T go to in�nity does not

matter at all and the small-sample bias is now not an incidental parameter issue but purely

a time-series problem.13 Nevertheless, it must be underlined that this is more of a thought

experiment as, in practice, some contribution from N to the rate of convergence will be

expected.

6 Analysis of Bias in the Presence of Spatial

Dependence and Clustering

6.1 Discussion on Modelling Cross-Section Dependence

This section considers a spatial dependence/clustering based approach to model cross-

section dependence and analyses the �rst-order bias properties of the integrated likelihood

estimator. It turns out that the cross-section dependence assumptions �t naturally into

this framework. The theoretical contribution of this section is establishing a connection

between the analytical bias reduction and clustering/spatial dependence literatures. The

motivation for this is quite pragmatic. Theorem 5.1 and Corollary 5.2 suggest that now

that one knows what the bias due to cross-section dependence looks like, one can simply

remove these terms and reduce the bias. However, this requires exact knowledge of the

magnitudes of the extra terms, that is exact knowledge on the values of �1 and �2. If, for

example, one mistakenly assumes that both of these terms are O(T�1) while in reality they

are O(T�3=2); then the bias-correction operation will actually introduce a O(T�1) bias. A

possible solution, then, is to model dependence explicitly and obtain the values of �1 and

13 In the absence of cross-section dependence, the classical result for a non-bias-corrected estimator is

p
NT (�̂ � �) d! N (�c �B; �);

where �B = O(1); �̂ is a standard non-bias-corrected estimator (such as the concentrated likelihood estima-
tor) and �c = limN;T!1

p
N=T : As such, the incidental parameter bias depends on the asymptotic ratio of

N and T:
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�2 for that particular type of dependence. This is useful from an applied perspective as

well, as it opens the way for bias reduction in spatially dependent and, as will be illustrated

in a moment, clustered samples.

A particularly popular approach to modelling cross-section dependence is factor mod-

elling. To illustrate by a simple example, let "it be the variable of interest where

"it = �i�t + �it; �t
iid� N (0; �2�) and �it

iid� N (0; �2�): (8)

Then, "it exhibits contemporaneous cross-section dependence due to the presence of the

common factor, �t; where the factor loading term, �i; ensures that the common factor

impacts individuals di¤erently.14 Using this approach in the present context is not con-

venient for several reasons. First, the entire analysis is based on the likelihood function,

rather than some random variable of interest, so the objective is to model the dependence

of the likelihood function itself. One could still assume a factor structure for the variable

of interest, and investigate the implications of this on the dependence structure of the like-

lihood and its derivatives. This works best for analytically tractable models. For example,

Phillips and Sul (2007) consider the Dynamic AR(1) model in the presence of neglected

cross-section dependence and analyse the Nickell (1981) bias. Also, Bai (2009) considers

a linear regression model in the presence of interactive �xed e¤ects and proposes a bias-

corrected estimator. However, given that the analysis here considers high order derivatives

of the likelihood function, this approach can become tedious very quickly. In addition,

for some models there might be inherent complications with the likelihood function. For

example, for the GARCH(1,1) model of Bollerslev (1986), likelihood derivatives do not

exist in closed form, due to the recursive structure of the likelihood function. In such

cases, keeping track of the factor structure will be very di¢ cult as higher order derivatives

enter the analysis.

The more convenient alternative for our purposes is to consider a spatial dependence

setting for the likelihood function itself. The idea in this setting is that the degree of

dependence between individuals is related to their �distance.�15 This type of dependence

is meaningful for various �elds, including urban, agricultural, development and labour

economics and economic growth. The main di¢ culty in modelling cross-section depen-

dence in this fashion is that cross-section data do not possess some convenient properties

of time-series data. To start with, there is a natural sense of distance in time-series data:

if today�s observation is one unit apart from yesterday�s observation, then weekly obser-

vations are seven units apart from each other. In addition, data arrive in a natural order:

observations one week apart are less dependent than observations for two consecutive days.

14 Important recent contributions in this literature include, but are certainly not limited to, Bai (2003,
2009, 2012), Bai and Ng (2002, 2004, 2006), Chudik, Pesaran and Tosetti (2011), Kapetanios, Pesaran and
Yamagata (2011), Moon and Perron (2004), Pesaran (2006), Pesaran and Tosetti (2011) and Phillips and
Sul (2003). See also Wansbeek and Meijer (2000).
15Recent important theoretical contributions in this area include Conley (1999), Kelejian and Prucha

(2007), Lee (2004, 2007), Jenish and Prucha (2009, 2010) and Bester, Conley and Hansen (2011).
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Such a natural ordering and distance does not exist for cross-section data. Naturally, the

de�nition of distance or, more formally, the choice of a �distance metric�depends on the

application under consideration.16 These are all concerns of applied econometric analy-

sis and they have to be addressed fully in any application. However, as the analysis here

considers the theoretical aspects of spatial dependence, we abstract away from such issues.

Then, the setting is as follows: the panel is spatially dependent and characterised

by cross-sectional clustering. It is assumed that the dataset has already been divided

into appropriate clusters by the econometrician. The task is to �nd out whether cross-

section dependence will lead to extra bias terms. The cluster structure considered here is

characterised by an increasing number of clusters and an increasing number of members

in each cluster, as N goes to in�nity. Considering other settings could be an interesting

project but this is beyond the scope of this study and is left for future research.

6.2 Notation and the Dependence Setting

The theoretical framework is based on recent work by Jenish and Prucha (2009) and

Bester, Conley and Hansen (2011). The main idea is to model cross-section dependence in

terms of the mixing concept, in a similar way to the time-series case. This is in contrast to

the common assumption that individuals in di¤erent clusters are independent, which is a

more restrictive setting.17 Instead, it is possible to assume that observations are spatially

weakly dependent, in the sense that the farther apart they are from each other, the closer

they are to being independent.

Consider some zero-mean random variable Zit and de�ne

ZiT =
1p
T

TX
t=1

Zit:

It is assumed that fZitg already has a CLT in the time-series dimension for each i: As

such, ZiT = O(1): The object of interest is the stochastic order of magnitude of

1

N

NX
i=1

ZiT ;

as N;T !1; where it is known that Zit exhibit cross-section dependence, which will be
formalised below. When ZiT is replaced by the relevant centred log-likelihood derivatives,

the relevance of this approach in relation with Assumption 3.11 becomes immediately

obvious.

As mentioned, individuals are assumed to have already been grouped into clusters by

16See Section 1 in Conley (1999) for a detailed discussion on de�ning a meaningful �economic distance�
for di¤erent types of economic applications.
17See, for example, Liang and Zeger (1986), Arellano (1987), Bertrand, Du�o and Mullainathan (2004)

and Hansen (2007) for important examples. Wooldridge (2003) and Cameron and Miller (2011) provide
surveys while a textbook treatment is available in Chapter 20 in Wooldridge (2010).
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the researcher. Both the number of groups/clusters,18 GN , and the number of members

of each group, LN are assumed to grow with N as N ! 1: It is also implicitly assumed
that the number of members is the same for all groups. Hence, LNGN = N: Denote

the index set for each group by Gg where g = 1; :::; G denotes a group and consequently,

Gg 2 fG1; :::;Ggg: j�j gives the number of elements in a given set, e.g. jGgj = LN :

Next, a mixing-type dependence concept for spatial processes is de�ned.19 First, a

general d-dimensional discussion is provided.20 The �nal result will then be applied to the

one-dimensional (cross-sectional) case of this study.

Indices are assumed to be located on an integer lattice D � Zd; where d > 0; which

is a standard setting. If d = 1; indices are integers on a line; if d = 2; the indices are

on a plane etc. The distance metric used in what follows is the maximum coordinatewise

distance metric, given by

�(i; j) = max
l2f1;:::;mg

jjl � ilj :

Here il is the lth component of i: It is also necessary to have a notion of distance between

subsets of D :

�(D0; D00) = inff�(i; j) : i 2 D0 and j 2 D00g; for any D0; D00 � D:

The distance metric enables to measure the distance between two indices, or more intu-

itively, between two locations. The distance between subsets on the other hand is useful

when considering the distance between two clusters, e.g. between two collections of loca-

tions. For example, all cities in Germany can be one subset while all cities in France can

be another subset. Finally, de�ne the boundary of an index set,

@Gg = fi 2 Gg : 9j =2 Gg such that �(i; j) = 1g:

This simply is the collection of locations that sit on the boundary of group g:

The analysis is based on the assumption that the sample space grows to in�nity, which

ensures that the sample size grows to in�nity. This is de�ned as increasing domain as-

ymptotics. The alternative is in�ll asymptotics where the sample space remains �xed;

consequently, as the sample size grows, observations have to be located more densely.21

Since location indices are located on an integer lattice, they are all at least one unit away

from each other by default, so in�ll asymptotics is assumed away by de�nition.

A de�nition of �-mixing for random �elds can now be given.

De�nition 6.1 For D0
N � D and D00

N � D; de�ne the random �elds Y 0 = fYiT;N : i 2
18 In the remainder, the concepts of group and cluster are used interchangeably.
19The following discussion closely follows Section 2 of Jenish and Prucha (2009) and Section 3 of Bester,

Conley and Hansen (2011).
20Clustering in many dimensions is not uncommon. For example, in the international trade literature,

observations can be clustered by destination and product, by �rm and destination or by �rm and product.
See, e.g., Manova and Zhang (2009).
21This is formalised in Assumption 1 of Jenish and Prucha (2009).
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D0
Ng and Y 00 = fYiT;N : i 2 D00

Ng. De�ne further the respective �-�elds as AT;N =

�(YiT;N : i 2 D0
N ) and BT;N = �(YiT;N : i 2 D0

N ): Then, the �-mixing coe¢ cient is given

by

�k;l;T;N (m) = sup
S
jP (A \B)� P (A)P (B)j ;

where S = fA;B : A 2 AT;N ; B 2 BT;N ;
��D0

N

�� � k;
��D00

N

�� � l; �(D0
N ; D

00
N ) � mg:

This de�nition is di¤erent from the standard time-series de�nition in several ways.

First, the cardinalities, or the number of elements, of the index setsD0
N and D

00
N do matter.

This is because, given a �xed distance between two sets, the dependence between larger

sets will be at least as high as the dependence between smaller sets, due to accumulation

of dependence.22 This in turn leads to possibly greater dependence between the related

�-algebras. Consequently, one would, for instance, expect �k;l;T;N (m) � �~k;~l;T;N (m) when
~k > k and ~l > l: Here,m is a measure of distance between the two index sets. Consequently,

if the �-mixing coe¢ cient vanishes as m ! 1, the underlying random �eld will be �-

mixing. The index sets naturally depend on N because as N increases, the sample space

expands. Dependence on T is a modi�cation introduced here. This is necessary because

the random �elds are constructed using ZiT : Since these depend on T; the �-algebras

generated by these observations will also depend on T: This is mentioned to make the

analysis complete; in the remainder the focus will be on

�k;l(m) = sup
T;N

�k;l;T;N ;

in any case, so dependence on T and N will not be an explicit problem.

The following assumptions are adapted from Bester, Conley and Hansen (2011). Some

of these have already been mentioned, but are nevertheless listed below for sake of com-

pleteness.

Assumption 6.1 D grows uniformly in d non-opposing directions as N ! 1: In addi-
tion, GN ,LN !1 as N !1: Also, for all groups g 2 f1; :::; Gg; jGgj = LN :

Assumption 6.2 For all g 2 f1; :::; Gg; j@Ggj < CL
(d�1)=d
N ; where C is some constant.

Assumption 6.3 Groups are mutually exclusive, exhaustive and contiguous in the max-
imum coordinatewise distance metric.

Assumption 6.4 supi;T E[jZiT j~"] <1 where ~" > 2 + � for some � > 0.

Assumption 6.5 (a)
P1
m=1m

d�1;1(m)
�=(2+�) < 1; (b)

P1
m=1m

d�1�k;l(m) < 1 for

k + l � 4; (c) �1;1(m) = O(m�d�") for some " > 0:

22See the discussion in Jenish and Prucha (2011).
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Assumption 6.6 lim infN!1 V ar
�
L
�1=2
N

P
i2Gg ZiT

�
> 0; for all g:

Assumptions 6.1-6.3 determine the characteristics of the cluster structure. These en-

sure that the clustering cannot be considered in less than d dimensions, that the number

of groups and the number of members of a given group increase with N and that all

groups have an equal number of members. In addition, the border size of a given cluster

is bounded above by CL(d�1)=dN : This precludes, for example, �narrow� yet �very long�

clusters. Essentially, this assumption is used to limit the dependence between clusters. Fi-

nally, it is assumed that all members of a sample are assigned to one and only one cluster.

Contiguity ensures that a given group does not have disjoint components. Assumptions

6.4-6.6 are technical conditions for mixing processes which are used to invoke Theorem 1

of Jenish and Prucha (2009).

6.3 Theoretical Results

Under the notation introduced in the previous section,

V ar

 
1

N

NX
i=1

ZiT

!
=

1

N2

NX
i=1

V ar (ZiT ) +
1

N2

NX NX
i6=j

Cov(ZiT ; ZjT )

=
1

N2

GX
g=1

X
i2Gg

Cov (ZiT ; ZjT ) (9)

+
1

N2

GX GX
g 6=h

X
i2Gg

X
j2Gh

Cov(ZiT ; ZjT ): (10)

This gives the variance of the cross-section average as the sum of two parts: (i) the

normalised sum of covariances of all pairs from the same cluster (9) and (ii) the normalised

sum of covariances of all pairs from di¤erent clusters (10). The main result now follows.

Theorem 6.2 Under Assumptions 6.1-6.6,

V ar

 
1

N

NX
i=1

ZiT

!
= O

�
1

N

�
+O

 
1

L
(d+1)=d
N

!
:

The idea behind the proof, given in the Mathematical Appendix, is to attack the two

terms separately. The �rst term is dealt with by using the CLT given in Theorem 1 in

Jenish and Prucha (2009), using Assumptions 6.4-6.6. The bound for the second term is

found by employing the method used by Bester, Conley and Hansen (2011) in the proof

of their Lemma 1. The main idea is to �rst �nd a bound on the maximum number of

pairs fi; j : i 2 Gg; j 2 Gh; g 6= h; g; h = 1; :::; Gg that will be considered. This is where
Assumptions 6.2 and 6.3 are used. A bound on the covariances is already available due to

Bolthausen (1982). Combining these two bounds results in the bound given in Theorem

6.2.
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To illustrate the signi�cance of Theorem 6.2, �rst notice that in this study d = 1:

Then, the following corollary yields the updated convergence rates for Assumption 3.11.

Corollary 6.3 Assume that LN = O(
p
N): If the sampling setting and the three likelihood

derivatives considered in Assumption 3.11 satisfy Assumptions 6.1-6.6, then

r�`NT (�0; ��(�0)) = Op

�
1p
NT

�
;

r�(2)`NT (�0; ��(�0))� E[r�(2)`NT (�0; ��(�0))] = Op

�
1p
NT

�
;

r�(3)`NT (�0; ��(�0))� E[r�(j)`NT (�0; ��(�0))] = Op

�
1p
NT

�
;

as N;T !1: Therefore, �1 = �2 = �3 = 1:

The results follow by observing that, for example,

TV ar
�
r�`NT (�0; ��(�0))

�
= O

�
1

N

�
+O

�
1

L2N

�
= O

�
1

N

�
) r�`NT (�0; ��(�0)) = Op

�
1p
NT

�
;

where the bound on r�`NT (�0; ��(�0)) follows from Markov�s inequality.

Not surprisingly, weak dependence across both time and cross-section leads to the

faster convergence rate of
p
NT . As a consequence of Corollary 6.3, the cross-section

dependence induced bias term will be negligible. Importantly, these results are based on

the assumption that both the number of groups and the number of members of each group

grow at rate
p
N: Of course, there can be many other settings, e.g. the number of groups

might grow at a much slower rate. A more detailed analysis is certainly desirable but

outside the scope of this paper.

7 Application: Modelling Financial Volatility in Small

Samples

7.1 Panel Estimation of Volatility

The literature on ARCH-type models starts with Engle (1982) and Bollerslev (1986) who

modelled the conditional variance of returns. Consider some variable of interest yt where

t = 1; :::; T; such that

yt = �t + "t; �t = E[ytjFt�1] and "tjFt�1 � F (0; �2t );

where Ft is the information set at time t and F (0; �2t ) is some zero-mean distribution with
variance �2t : To keep the analysis simple, and since the focus of this study is on condi-

tional variance, henceforth it is assumed that �t = E[ytjFt�1] = 0: This is a reasonable
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assumption for, for example, daily stock returns. Then, the GARCH(1,1) model is given

by

�2t = !i + �"
2
t�1 + ��

2
t�1 where ! > 0; �,� � 0 and �+ � < 1:

Hence, other things being equal, high/low past shocks, "t�1; lead to high/low conditional

variance today. Similarly, high/low past conditional variance, �2t�1, causes high/low con-

ditional variance today. The common approach to parameter estimation is to conduct

�Quasi Maximum Likelihood estimation� (QMLE) by using the Normal distribution in-

stead of the unknown true distribution F . As shown by Bollerslev and Wooldridge (1992),

this gives consistent estimators even if the normality assumption is wrong, as long as the

conditional mean and conditional variance are correctly speci�ed.

ARCH-type univariate models of volatility are based on the analysis of �nancial time-

series individually, while multivariate volatility modelling focuses on the covariance struc-

ture between many �nancial series.23 Estimation of GARCH parameters in a panel rather

than the standard time-series setting was suggested by Pakel, Shephard and Sheppard

(2011), which they call the GARCH Panel method. Their main motivation is that consis-

tent estimation of GARCH parameters by standard time-series methods typically requires

1,000-1,500 observations, due to the nonlinear dynamics of the GARCHmodel and the high

levels of persistence in the conditional variance.24 For �nancial or macro variables such

as hedge fund returns, in�ation and industrial production, which are recorded at monthly

frequency, a long record of observations may not exist. This virtually rules GARCH

modelling out for such datasets. As a remedy for insu¢ cient time-series variation, they

propose utilising the cross-section information, as well; hence, the panel approach. This

they achieve by applying the results of Engle, Shephard and Sheppard (2008) to univari-

ate volatility modelling. Their simulation and empirical analyses suggest that, although

the GARCH Panel method leads to gains both in- and out-of-sample, it su¤ers from the

incidental parameter issue. This, however, is not investigated theoretically. The current

study, although motivated by their results, is concerned with analysing the �rst-order bias

properties of nonlinear and dynamic panels under time-series and cross-section depen-

dence. As such, although the GARCH Panel method is used as some sort of an extended

example, this paper has a wider scope than GARCH modelling.

A GARCH panel is de�ned as a collection of N individual �nancial time-series that are

characterised by GARCH(1,1) dynamics. Crucially, it is assumed that the parameters of

interest that govern the conditional variance dynamics (� and �) are common to all series

while the intercept parameters are allowed to vary across cross-section. It can be shown

that this implies individual-speci�c long-run (unconditional) variances. Hence stock X can,

on average, be more volatile than stock Y, although their volatilities will evolve according

23An introductory survey of univariate models is given by Teräsvirta (2009), while a detailed analysis
of multivariate GARCH models is provided by Bauwens, Laurent and Rombouts (2006). See Francq and
Zakoïan (2010) for a detailed textbook treatment of GARCH type models.
24For example, GARCH parameter estimates for stock market volatility usually imply high level of

persistence, close to being unit-root (Nelson (1991))
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to the same dynamics. Speci�cally, let the variable of interest, e.g. stock returns, for series

i at time t be given by

yit = E[yitjFi;t�1] + "it where t = 1; :::; T and i = 1; :::; N:

Here, Fi;t is the information set for individual i at time t and, again, it is assumed that
E[yitjFi;t�1] = 0: The speci�cation of the conditional variance follows along common lines
where

"it = �it�it, �it � F; E[�it] = 0; V ar(�it) = 1; (11)

�2it = �i (1� �� �) + �"2i;t�1 + ��2i;t�1, (12)

�i > 0 8i; �; � � 0 and �+ � < 1, (13)

where F is, again, some distribution, such as the Standard Normal. It must be underlined

that �it are not assumed to be iid across i as it is reasonable to assume that �nancial time-

series are characterised by some degree of cross-sectional dependence. Possible examples of

this could be returns of �rms operating in the same industry or of funds following similar

investment strategies.

The �variance-targeting�representation in (12) implies that E[y2it] = �i:
25 Therefore,

a simple method of moments estimator for �i is provided by

~�i = T�1
TX
t=1

y2it: (14)

Pakel, Shephard and Sheppard (2011) use this to estimate �1; :::; �N in a �rst step. In the

second step, estimators of the intercept parameters are plugged into the pseudo-likelihood

function to obtain an estimator for �. This two-step estimation method allows for estima-

tion of the GARCH parameters under large cross-section dimensions.

What remains is to construct the joint likelihood function for fyitgi=1;:::;N ;t=1;:::;T : De-
�ne � = (�; �) and let `it (�; �i) � `it (�; �i; yitjFi;t�1) be the conditional log-likelihood
for yit. To side-step the computational and statistical issues in modelling the full joint

likelihood, a composite likelihood function is used as an approximation to the joint like-

lihood. This is achieved by averaging the univariate marginal (conditional) likelihoods.

Then, the composite likelihood function given by (NT )�1
PN
i=1

PT
t=1 `it(�; �i) will still

deliver consistent estimators, albeit with some e¢ ciency loss, depending on the speci�c

dependence structure (see Cox and Reid (2004) and Engle, Shephard and Sheppard (2008)

for theoretical details).26 Hence, the composite likelihood method o¤ers a convenient way

25Using �i(1����) instead of !i is a monotonic transformation of the model which does not a¤ect its
properties. See Engle and Mezrich (1996) who introduced this parameterisation.
26 It is possible to account for covariation between conditional densities by using bivariate conditional

densities, as well. However, this approach will not be taken here, as it will increase the computational
burden further, which is already high when bias-reduction methods are employed. Moreover, simulation
results in Pakel, Shephard and Sheppard (2011) suggest that this simple approximation delivers satisfactory
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of pooling information, while keeping the computational burden at a minimum.27

7.2 Calculation of the Priors

For (P1) and (P2), estimates of population moments are obtained by using

bE h�`��i (�; �i)i = � 1
T

TX
t=1

`��it (�; �i);

bEfh`�ii (�; �i)i2g = 2

T 1=3X
l=0

�
1� l

1 + T 1=3

�

l (�; �i) ;


l (�; �i) =
1

T

min(T;T+l)X
t=max(1;l+1)

h
`�it(�; �i)� `�i;t�l(�; �i)

i
:

Calculation of bEf[`�i (�; �i)]2g is based on heteroskedasticity and autocorrelation consis-
tent (HAC) covariance estimation by Newey and West (1987) (see also Arellano and

Hahn (2006)). Derivatives of the log-likelihood are not available in closed form for the

GARCH(1,1) process and are calculated by using numerical optimisation methods.

7.3 Simulation Analysis

7.3.1 Simulation Setting

In this section, small sample performance of the integrated likelihood method using priors

(P1) and (P2) is analysed. The baseline estimation method is the Composite Likelihood

(CL) method suggested by Pakel, Shephard and Sheppard (2011) to estimate the GARCH

panel model. The Infeasible Composite Likelihood (InCL) method, where true values of �i
are used in estimation, is used as the theoretical benchmark. Lastly, integrated likelihood

methods using prior (P1) and (P2) are designated as the integrated composite likelihood

(ICL) and integrated pseudo composite likelihood (IPCL) methods, respectively.

In light of the simulation results in Pakel, Shephard and Sheppard (2011), who observe

that the incidental parameter problem is most acute when T is around or less than 250; this

section focuses on T 2 f75; 100; 150; 200; 400g and N 2 f25; 50; 100g. Data are generated
for �0 = (0:05; 0:93) and the nuisance parameters are drawn from a uniform distribution

such that the corresponding annual volatility is between 15% and 80%; which provides a

reasonable interval for most stock returns.

results.
27Utilisation of cross-sectional information in modelling conditional variance, by focusing on a collection

of GARCH processes, has previously also been considered by e.g. Engle and Mezrich (1996), Bauwens and
Rombouts (2007), Engle, Shephard and Sheppard (2008) and Engle (2009). However, this study follows
a di¤erent approach and models conditional variance explicitly within a panel structure. Hospido (2010)
also considers GARCH errors in analysing earning dynamics using the PSID dataset; however, she assumes
cross-section independence and does not analyse the e¤ects of time-series dependence on the incidental
parameter bias.
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Data are generated by using,

yit = �it + "it; �it = E[yitjFi;t�1] = 0; "it = �it�it;

�2it = �i(1� �� �) + �"2i;t�1 + ��2i;t�1; �2i0 = �i0;

where the unconditional variance, �i0; is used as the initial value for the conditional

variance, �2i0. Following Engle, Shephard and Sheppard (2008), cross-sectional dependence

is generated by using a single-factor model where

�it = �iut +
q
1� �2i � it;

ut
iid� N(0; 1); � it

iid� N(0; 1):

This implies that

E[�itj�i] = 0 8i; t;

cov

" 
�it

�jt

!����i; �j
#
=

"
1 �i�j

�i�j 1

#
8i 6= j and 8t

cov(�it; �jsj�i; �j) = 0 8t 6= s and 8i; j:

For this purpose, �i are drawn from a Uniform distribution where �i � U(0:5; 0:9): There-

fore, the correlation between any two given series will be between 25% and 81%: 28

Estimation is conducted in Matlab. The optimisation procedure supplied by this soft-

ware requires user-supplied starting values for the parameters of interest. In order to pre-

vent any bias in estimation performance due to the selection of starting values, starting

values for � and � are drawn randomly from a Uniform distribution, for each replication,

using �+ � � U(0:5; 0:99) and �=(�+ �) � U(0:01; 0:3):

The integrated likelihood is calculated using the basic quadrature method. It is pos-

sible to use di¤erent and more sophisticated numerical integration methods. However, to

keep the analysis simple, these will not be investigated here. The integrated composite

likelihood estimator is obtained by using iterated updating. Iteration stops either at the

tenth iteration or convergence of the estimator, whichever happens �rst. In simulations,

the maximum number of iterations across all panel dimensions was six and in most cases

two to four iterations were su¢ cient for convergence. Lastly, an initial value for condi-

tional variance, �2i0; has to be speci�ed to construct the composite likelihood. This is done

by using

�2i0 =
1

dT 1=2e

dT 1=2eX
t=1

y2it;

28 It is important to ensure that cross-sectional dependence is not too high as that will lead to inconsis-
tency of the composite likelihood estimator (see Cox and Reid (2004)). Seen from a di¤erent perspective,
high levels of cross-sectional dependence will imply that there is not much point in considering a panel
structure as there is not much cross-sectional variation.
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as in Shephard and Sheppard (2010), where dT 1=2e is obtained by rounding T 1=2 up to
the nearest integer.29

7.3.2 Analysis of Estimation Performance

Simulation results are based on 500 replications. The following results and illustrations

are provided for the cross-sectional dependence case: Average parameter estimates, cal-

culated over all replications, are given in Table 1. Also, the sample standard deviations

of parameter estimates (���̂ and ���̂) and the root mean square errors (R�̂ and R�̂) are
given on the left and right panels of Table 2, respectively. Finally, sample distributions

of �̂; �̂ and �̂+ �̂ are given in Figures 1, 2 and 3, respectively. Several results for panels

with cross-section independence are also provided for comparison: Average parameter es-

timates are given in Table 3, while Table 4 presents the sample standard errors and root

mean square errors.

Result in Table 1 suggest that using the integrated likelihood and the robust priors

leads to substantial reductions in the bias of the CL estimators. In some cases, the

reduction in bias is enormous: for example, for T = 100 and N = 100; ICL reduces 52%

of the bias in �̂ due to CL, while the bias in �̂ is reduced by 73%, in absolute value.

Similarly, when T = 100 and N = 25; 47% of the bias in �̂ and 91% of the bias in �̂ is

removed by ICL. Simulation results also reveal that, in the simulation setting considered,

bias is indeed related to T and not N: There is a clear downward pattern in the bias as

T increases. However, no such clear trend is observed in relation to N: As expected, as

T increases, all methods tend to perform similar to InCL. This is intuitive for ICL and

IPCL. For large T; the �rst order bias will be very small anyway, so the choice of the prior

will have no e¤ect.

It is also interesting to compare the bias performance in estimation of � + �; which

gives the memory of the GARCH process. An intriguing observation is that the integrated

likelihood tends to estimate this quantity much better, even when compared to the infea-

sible method. Especially for larger N; integrated likelihood estimator achieves accuracy

even when T is as low as 75: CL, on the other hand, never manages to catch up, even

when T = 400: Interestingly, performance of a similar calibre is not attained in estimating

� and � separately. Therefore, one implication is that perhaps the integrated likelihood

method�s structure is such that essentially it estimates � + �: However, without further

theoretical analysis, which is beyond the scope of this study, this remains a speculation.

Figures 1, 2 and 3 provide additional insights into the properties of the methods con-

sidered here. The locations of the modes of sample distributions imply that, independent

of T and N; ICL and IPCL are more likely to underestimate � and overestimate �. These

methods also overestimate �̂+ �̂; on average. It is also clear that the performances of the

four methods in estimating � and � converge to each other as T increases. Estimation of

29A more detailed discussion of the estimation procedure, which is standard, is given in Appendix B for
possible replication purposes.
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� + � is a slightly di¤erent story where, in line with the previous discussion, CL is slow

in converging to InCL.

Sample distribution of �̂ given in Figure 1 gives some more idea about the behaviour of

�̂: Results for CL are omitted in the �rst row, as in almost all cases �̂ � 0; implying that �
is not identi�ed. Although the situation for ICL and IPCL is not as severe, in a substantial

proportion of cases �̂ � 0; nevertheless: However, the ratio of such cases diminishes as T
increases. Moreover, for a given T; increasing N also leads to a substantial decrease in

the number of instances of �̂ � 0; for ICL and IPCL. One example is panels with 75 time-
series observations. Clearly, increasing the number of cross-sectional observations from 25

to 100 makes almost all cases where �̂ � 0 disappear. The same is not observed for CL,
which is not surprising. Increasing T provides more time-series variation, leading to better

estimation of the incidental parameter. Increasing N; on the other hand, implies more

cross-sectional variation, which would improve the estimation of the common parameter

but not the nuisance parameter. Simulation results are in line with this argument, since

the problem in estimation of �̂ by CL can only be solved by increasing T as what is

missing is time-series information. ICL and IPCL, on the other hand, are based on the

bias reduction mechanism, implying that the small-T issue is much less severe. Adding

more cross-sectional information is, thus, enough to improve the estimation of �̂:

In line with the rest of the bias-reduction literature, bias-reduction does not come at a

cost of increased variance. The left panel of Table 2 reveals that bias-reduction by robust

priors does not increase the variance of the estimators in comparison to CL; instead it leads

to lower standard deviation.30 As before, as T increases, standard deviations of di¤erent

methods become similar. Also, for a given T; larger N generally leads to lower standard

deviation. The combination of superior bias and standard deviation performance of the

robust priors is translated into superior root mean square error performance, as can be

observed in the right panel of Table 2.

Finally, it is an interesting question whether neglecting the presence of cross-sectional

correlation when constructing bias-reducing priors might have a non-negligible e¤ect on

parameter estimates. For example, one unpleasant scenario could be such that bias is

reduced not because of bias-reducing priors directly, but because of possible interaction

between the prior, the bias term and the extra term that appears due to cross-sectional

dependence. However, simulation results reveal that the e¤ect of neglected cross-sectional

dependence is not on the bias of the estimator but on its variance. Comparison of Tables

1 and 3 indicates that for all methods the change in average bias due to neglected cross-

section dependence is not signi�cant. One observation for IPCL is that under cross-

sectional independence �̂ + �̂ is estimated with less bias even when using shorter panels,

while �̂ is slightly more biased. In general, these minor di¤erences between the two

dependence structures tend to lessen as T increases. The change in sample standard

30The only exception to this observation occurs for �̂ when T = 50: However, it must be remembered
that in this case, in the majority of replications, �̂ � 0 for CL, which implies very low variance.
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deviation, on the other hand, is striking. In some cases, introduction of cross-sectional

dependence leads to a three-fold increase in standard deviation (see Tables 2 and 4).31

To summarise, simulation results show that, in line with the theoretical results, bias

reduction using robust priors removes a substantial portion of the bias. Moreover, bias-

reduction does not entail an increase in the standard deviation of the estimators and,

instead, leads to lower standard deviation compared to CL. Crucially, robust priors achieve

good small sample properties when T is around 150; which suggests that they can be used

to model conditional volatility for short GARCH panels. Importantly, simulation results

indicate that the e¤ect of neglected cross-sectional dependence is clearly on standard

deviation while it has little or no e¤ect on average bias.

7.3.3 Analysis of Likelihoods

Finally, average likelihood plots, based on the 500 replications, for several panel dimensions

are provided in Figure 4. Since ICL and IPCL behave similarly, only the plots for ICL are

presented. Average likelihood for varying values of � are plotted by �xing the likelihood

with respect to the true value of � (and similarly for the average likelihood for varying

values of �). The plots for CL are based on estimated values of the nuisance parameters,

while infeasible CL plots are based on the true nuisance parameter values. Lastly, in

order to calculate the integrated CL, a value for � and � at which the robust prior has

to be evaluated should be chosen for each replication. For a given replication, integrated

likelihood estimates from the penultimate iteration are used for that purpose.

Likelihood plots immediately con�rm that the problem with CL is that the likelihood

for � is wrongly centred. As a result, estimates of � are always close to the boundary. As

T increases, the mode of the average likelihood moves towards the true value of �. For �;

on the other hand, the major problem is that the likelihood is almost �at, implying that �

is not identi�ed. This is not surprising, since, as mentioned previously, � is not identi�ed

when � = 0: Only when T increases does the average likelihood show some improvement.

Moreover, it is clear that ICL is e¤ective in correcting the location of the likelihood. This

also solves the identi�cation problem for �, as can be seen from the average ICL for �,

which is not �at and its shape is similar to that of the average infeasible CL. These �ndings

further attest the e¤ectiveness of robust priors in removing the �rst-order bias.

8 Empirical Analysis

This section presents two empirical studies of the bias-reduced GARCH panel estimator.

The �rst is a comparison of predictive ability, based on stock return volatility forecasts by

di¤erent methods. The second is an analysis of hedge fund volatility using a consolidated

31Phillips and Sul (2007) analyse the Nickell bias under neglected cross-sectional dependence and show
that, in such a setting, the probability limit of the estimator becomes a random variable. This could
be considered similar in spirit to the results obtained here, which suggest that neglected cross-sectional
dependence leads to higher dispersion of the average bias.
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database of hedge fund returns. Hedge fund returns are rarely available at higher than

monthly frequency and the maximum number of observations for any fund is around

200. This makes it virtually impossible to analyse hedge fund volatility using standard

GARCH estimation techniques. Hence, this empirical analysis is a novel contribution to

the literature. In both applications, naturally, a pseudo-likelihood setting is assumed and

the integrated likelihood functions are constructed using the pseudo-likelihood Prior given

in (P2).

8.1 Analysis of Predictive Ability

8.1.1 Dataset

The analysis of predictive ability is based on daily data on returns to nine stocks traded

in the Dow Jones Industrial Average. The dataset has been downloaded from the Oxford-

Man Institute�s Realized Library (produced by Heber, Lunde, Shephard and Sheppard

(2009)) and is based on data used by Noureldin, Shephard and Sheppard (2011). The

dataset covers the period between 1 February 2001 and 28 September 2009 and is from

the TAQ database. The included stocks are Alcoa, American Express, Bank of America,

Coca Cola, Du Pont, Exxon Mobil, General Electric, IBM and Microsoft.

The comparison of predictive ability is based on comparison of forecast loss due to

competing estimators, where the forecast loss is computed with respect to the variable of

interest; the conditional variance. However, conditional variance is not observable, even

ex-post, and a proxy has to be used instead. A convenient proxy is squared returns.

However, this is a very noisy proxy, potentially leading to misleading results (Patton and

Sheppard (2009) and Patton (2011)). A better alternative is realised variance, which is an

estimator of ex-post volatility based on high-frequency intra-daily data.32 An important

advantage of the chosen dataset is that it includes realised variances for each stock, in

addition to daily returns. This is the main motivation behind using this dataset, as the

ability to base forecast comparison on a more accurate proxy is a crucial one.33

For a more detailed explanation on the features of the dataset and estimation of the

realised variances, see Noureldin, Shephard and Sheppard (2011). In particular, they

report that both the returns and the realised variances are open-to-close due to market

microstructure noise. In addition, the �rst and last 15 minutes of trading are dropped

from the sample in order to deal with overnight e¤ects. Lastly, realised variances are based

on 5-minute returns with subsampling.

32See, for example, Andersen, Bollerslev, Diebold and Labys (2001), Barndor¤-Nielsen and Shephard
(2002), and Barndor¤-Nielsen, Lunde, Hansen and Sheppard (2008). Reviews include Barndor¤-Nielsen
and Shephard (2007) and Andersen, Bollerslev and Diebold (2009).
33 It would be desirable to base the analysis on panels with a larger cross-section dimension. However,

estimation of realised variances for a random selection of stocks is a non-trivial and highly time-consuming
task. In addition, a given stock may not be liquidly traded to start with, which implies complications for
realised variance estimation. For these reasons, a more detailed analysis is left for future research.
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8.1.2 Forecast Construction

This study focuses on one-step ahead forecasts only, for sake of brevity. The one-step

ahead forecasts for a given set of estimators (�̂; �̂; �̂1; :::; �̂N ) are obtained by using

E["2itjFi;t�1] = �2it = �i(1� �� �) + �"2i;t�1 + ��2i;t�1;

�̂2it = �̂i(1� �̂� �̂) + �̂"2i;t�1 + �̂�2i;t�1:

The three methods under consideration are the Quasi Maximum Likelihood (QML),

Composite Likelihood (CL) and Integrated Pseudo Composite Likelihood (IPCL) methods.

QML is the standard way of �tting the GARCH model, where GARCH parameters are

estimated individually for each time-series under consideration. This setting also allows

for a comparison of the forecasting performances of the standard QML method against the

panel-based methods (CL and IPCL). QML and CL are based on a two-step estimation

framework which uses the variance-tracking version of GARCH as speci�ed in (12). In

the �rst step, �i are estimated by method of moments using (14). ~�1; :::; ~�N are then

plugged into the likelihood function in order to estimate the parameters of interest in the

second step. As for the integrated likelihood method, the particular parameterisation of

the intercept parameter is of no consequence as the intercept is integrated out anyway.

The only consideration that matters is that the support of the integrand of the integrated

likelihood (as set by the researcher) includes the true parameter value.34

An important concern is estimation of the intercept parameter. When the main ob-

jective is to obtain consistent and bias-corrected estimators of parameters of interest, the

individual e¤ects are not of direct importance and they are indeed nuisance parameters in

the literal sense. However, when the interest is in making predictions, the intercept has to

be estimated, as well. This is an important distinction from the traditional bias-reduction

literature. For all methods under consideration, the method of moments estimator given

in (14) is consistent and valid independent of how � and � are estimated. However, re-

member that the integrated likelihood estimators are in essence concentrated likelihood

estimators. Therefore, a natural intercept estimator is given by

�̂
c

i (�̂IL) = arg max
�i2�i

1

T

TX
t=1

`it(�̂IL; �i): (15)

As �i are estimated for each time-series individually, estimation by the concentrated like-

lihood method comes at little cost in terms of computation time.35 For QML and CL,

why �i would be estimated by a similar method is less obvious as these methods do not

estimate � by concentrated likelihood to begin with.36

34 In this study, when calculating the integrated likelihood, the upper and lower limits of the integral are
set to 2� (maxi;t r2it) and :8� (mini;t r2it):
35From a theoretical perspective, both this and the method of moments estimators are consistent and

valid. However, there might be di¤erent implications in small samples.
36Remember that CL uses ~�i = T�1

PT
t=1 y

2
it to construct (NT )

�1PT
t=1

PN
i=1 `it(�;

~�i) which is not
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8.1.3 The Test Procedure

Comparisons of the predictive ability of the three methods are done using the Giacomini

and White (2006) unconditional predictive ability test (GW-test henceforth). As the

objective of this analysis is to compare methods (QML, CL and IPCL) rather than models

(GARCH, Exponential GARCH etc.) this test, rather than the Diebold-Mariano-West37

type tests, is better suited to the analysis.

Forecasts are constructed using a rolling window scheme, where the in-sample size is

�xed at 150: Speci�cally, the �rst forecast is calculated using estimates that are based on

observations t = 1 to t = 150. The second forecast is then calculated using estimates that

are based on observations t = 2 to t = 151; and so on. Therefore, successive forecasts

are always based on the most recent 150 observations. The dataset consists of 2; 176

observations, implying a total of 2; 026 forecasts for each of the nine stocks.

To brie�y describe the test procedure, suppose �̂21;i;t+1 and �̂
2
2;i;t+1 are the one-step

ahead forecasts for stock i calculated at time t by two di¤erent methods. Accuracy of

these forecasts is measure by using the QLIKE loss function:

L(�2i;t+1; �̂
2
i;t+1) = log �̂

2
i;t+1 +

�2i;t+1

�̂2i;t+1
:

A particular advantage of QLIKE is that it is robust to noisy proxies (Patton (2011)). In

other words, on average, it is expected to provide the same ranking between two forecasts

independent of whether the true conditional variance or a conditionally unbiased proxy is

used.

De�ning RVit as the realised variance for stock i at time t; the di¤erence between the

loss functions when RVit is used as the proxy is given by �Li;t+1 = L(RVi;t+1; �̂
2
1;i;t+1)�

L(RVi;t+1; �̂
2
2;i;t+1): Assuming that forecasts are made at periods T to T ; the test setup is

given by

H0 : E[�Li;t] = 0 for t = T ; T + 1; :::; T ;

H1 :
��E[��Li:n]�� � � > 0 for all n su¢ ciently large,

where ��Li;n = n�1
PT
t=T �Li:t and n = T � T + 1: The relevant test statistic is ti;n =p

n��Li;n=�̂n; where �̂n is an estimator for �2n = var
�p
n��Li;n

�
; obtained by using a HAC

estimator. Under H0; ti;n converges in distribution to N (0; 1) as n ! 1: See Giacomini
and White (2006) for details. Intuitively, if H0 is rejected, a positive �Li;t+1 implies

relatively higher loss due to the �rst method, suggesting that the second method has

necessarily the same as (NT )�1
PT

t=1

PN
i=1 `it(�; �̂i(�)) where �̂i(�) � argmax�i T

�1PT
t=1 `it(�; �i):

37See the seminal works by Diebold and Mariano (1995) and West (1996). Basically, the structure of
these tests is such that the null hypothesis is based on the probability limits of the estimators. Therefore,
they are not suited to comparing di¤erent methods that all produce consistent estimators of the same
parameter. Under the GW-test framework, on the other hand, the in-sample size is not allowed to increase
asymptotically, which allows for comparison of di¤erent methods, even if they are based on the same model.

33



better predictive ability (and similarly for negative �Li;t+1).

8.1.4 Results

The test results are given in Table 5, which contains the t-statistics and the result of the

GW-test. Loss functions are based on realised variances, RVit: A dash signi�es that the

test result is inconclusive. All tests are done at 5% level of signi�cance.

Forecasts for QML and CL are based on intercept parameter estimates by the method

of moments, while IPCL forecasts are based on intercept estimates by the concentrated

likelihood estimator for the nuisance parameter, as in (15). The GW-test indicates that

IPCL achieves a better forecasting performance compared to both QML and CL. Except

for two cases (Coca Cola and Microsoft), IPCL delivers less loss relative to CL, with six

of those being statistically signi�cant. The di¤erence is larger between QML and IPCL

where the GW-test favours IPCL seven out of nine times. Furthermore, Columns 2 and

3 of Table 5 indicate that QML always leads to a higher loss in comparison to CL, as all

t-statistics are positive. The di¤erence is statistically signi�cant in three out of nine cases

where the test decides in favour of CL. These results suggest that in the given sample the

panel-based methods perform better that the standard QML method in forecasting one-

step ahead volatility. Moreover, IPCL emerges as the best performer and bias-reduction

clearly improves the performance of panel-based estimation in comparison to QML.38

8.2 Hedge Fund Analysis

Hedge funds are alternative investment vehicles comprising one of the fastest growing

industries: the total value of assets under management has increased from $50 billion in

1990 to $1 trillion in 2004. By the end of 2011, the global assets under management

were expected to reach $2.25 billion , despite capital out�ows following the credit crunch

episode.39 Some of the peculiar features of hedge funds are that they are less regulated

and less transparent. For example, it is entirely up to a given fund whether to supply data

or not. Moreover, often there are mandatory lockup periods whereby investors cannot

withdraw their investment before a certain period which could be as long as a few years.

Hedge fund returns are usually reported at monthly frequency. As databases generally

start around 1994, the maximum number of time-series observations for any given fund

is around 200 (and possibly much lower than that). Clearly, this is well below what is

38Whether estimating �i by concentrated likelihood, rather than the method of moments, leads to a
di¤erence in small samples is an interesting question. In large samples, not much di¤erence would be
expected as both estimators are consistent. However, in small samples things might be di¤erent. Results
not reported here show that although IPCL still outperforms QML, it does so less decisively, while the
comparison between CL and IPCL results in a draw. The majority of the t-statistics is still in favour of
IPCL, but not large enough to force rejection of the hypothesis of equal predictive ability. These results are
available upon request. A thorough analysis of the e¤ects of the intercept estimator on predictive ability
is left for future research.
39Sources: The Economist, June 10, 2004; Financial Times, March 10, 2011.
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necessary for traditional GARCH estimation to be successful. However, as the simulation

results indicate, the GARCH panel model is well-suited to the task.

Estimation of hedge fund volatility is interesting for a number of reasons. First, the

ability to model volatility using the GARCH model is a novel capability which opens up

potential research avenues for the analysis of hedge fund returns. Due to limitations of

data, such analysis has hitherto been virtually impossible. The only relevant analysis

known to me is by Huggler (2004) who argues that modelling hedge fund portfolio returns

is problematic due to the shortness and low quality of available data. Instead, he considers

constructing representative proxies for hedge fund portfolios, where he uses the standard

univariate GARCH approach to model the error terms. To the best of my knowledge,

the empirical illustration presented here is the only other example of hedge fund volatility

modelling using GARCH errors.

Even when the volatility itself is not of direct interest, an accurate estimator of volatil-

ity can still be instrumental in analysing characteristics of hedge fund returns. For exam-

ple, a popular question is how much of a fund�s excess return can be attributed to manager

skills, the so called alpha. Alpha is a measure of the manager�s contribution to fund re-

turns, in excess of the portion that is attributed to economy-wide common or systemic

factors. The popular way to model excess returns is to use the seven-factor model due

to Fung and Hsieh (2004), (see, for example, Bollen and Whaley (2009), Teo (2009) and

Patton and Ramadorai (2011))40. As datasets are short, incorporation of serial depen-

dence and heteroskedasticity in the speci�cation of error terms is generally not possible,

requiring the use of bootstrapped standard errors. The GARCH panel estimator would be

useful here, as it is speci�cally designed to model this type of dependence in short panels.

A further use of volatility estimators is related to the use of volatility as a control factor.

For example, Agarwal, Daniel and Naik (2011) study the case of funds that report sub-

stantially higher returns during December, compared to the rest of the year. Arguing that

it is di¢ cult to consider a time-series approach to model risk exposure (due to data being

available at monthly frequency), they control for volatility by using the cross-sectional

sample standard deviation of monthly returns. Again, �tted monthly volatilities for all

funds individually can be obtained by using the methods proposed here. Finally, as em-

pirical results will also attest, even within the same investment strategy, funds can vary

in their levels of volatilities due to, e.g. market characteristics or manager�s risk appetites

(Huggler (2004)). In such a case, the integrated likelihood method provides an appropriate

estimator of standard deviations, which can then be used to obtain standardised returns.

40These seven factors are (1) the excess returns on the S&P500 stock index; the excess returns on
portfolios of lookback straddle options on (2) currencies, (3) commodities and (4) bonds; (5) the change
in the credit spread of Moody�s BAA bond over the 10-year Treasury bond; (6) a small minus big factor;
and (7) the yield spread of the US 10-year treasury bond over the three-month Treasury bill.
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8.2.1 Data Description

The dataset consists of monthly returns for 27; 396 funds for the period between February

1994 and April 2011, implying 207 monthly returns at most for any given fund. This data-

base of funds is a consolidation of data in the TASS, HFR, CISDM, Barclay-Hedge and

Morningstar databases.41 Importantly, funds are classi�ed into ten vendor-reported invest-

ment strategies. These are, Security Selection, Global Macro, Relative Value, Directional

Trading, Fund of Funds, Multi-Process, Emerging Markets, Fixed Income, Commodity

Trading Advisors (CTA) and Other. This provides a convenient criterion for grouping

funds into separate panels.

8.2.2 Results

The fund panels are generated as follows. First, funds which have been reporting in the

last T periods are selected, where T is some chosen panel length, say T = 150. Then,

one has to deal with the inherent biases in hedge fund data (Fung and Hsieh (2000)).

Firstly, it is common for many funds to undergo an incubation period where they do not

accept outside investors and build a track record on their own. Only when they have

been successful for a period, they take other investors on board. Naturally, this implies

that returns are biased upwards as funds that have been unsuccessful and went out of

the market during incubation are not observed. A second cause of upward bias is the

back�ll bias. When a fund decides to list returns in a database, it has the option to report

returns prior to the listing date, as well. This incentive is high for those funds with a good

returns history, and low for those with a less impressive track record. The result is an

upward bias in returns. To deal with these issues, funds with less than 12 months�history

prior to the start date of the chosen sub-sample are dropped. Lastly, to deal with possible

performance smoothing by hedge fund managers, returns for each fund are �ltered using

an MA(2) model, following Getmansky, Lo and Makarov (2004). Speci�cally, instead of

raw returns, residuals from an MA(2) model are used. The resulting returns are then

grouped according to the fund-reported investment strategies. By default, this implies

that only live funds are considered in the analysis. Finally, all fund returns are either in

or converted into US Dollars.

The maximum panel length is then 195: Clearly, longer panels will produce more

reliable estimates. However, as the consolidated database in not balanced, there is a

trade-o¤ as collection of a larger cross-section of funds is only possible by considering

shorter panels, and vice-versa. In fact, the strategies Global Macro and Other had to be

dropped from the analysis as only a handful of funds are available even when T = 150.

Therefore, although parameter estimates for T 2 f150; 175; 195g are reported, the analysis
will focus on T = 150 only, to achieve maximum cross-section variation.

41The data consolidation process is the same as that followed in e.g. Patton and Ramadorai (2011),
Ramadorai (2011) and Ramadorai and Streat�eld (2011). See Appendix B in Ramadorai and Streat�eld
(2011) for more information on the consolidation process.
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Parameter estimates and the number of included funds for the three sample sizes are

reported in Table 6. Estimates of � vary between :061 and :249, while �̂ takes on values

between :751 and :939. All strategies exhibit high memory as �̂ + �̂ is generally close to

1; across all T:42 Moreover, values of the estimates tend to change as T varies. However,

this should not entirely be attributed to changes in the sample size. The composition of

the panel changes, as well, as funds with less than the necessary number of observations

are dropped from the sample. Results suggest that Fixed Income, Emerging Markets and

Security Selection are the strategies that are most responsive to past shocks (high �̂).

CTA, Macro and Fund of Funds, on the other hand, stand out as those strategies with the

lowest sensitivity to past shocks and higher responsiveness to past conditional variance

(high �̂). These observations hold generally, independent of the panel length.

Figure 5 gives an overview of �tted conditional volatilities for T = 150.43 Generally,

varying degrees of volatility clustering is present across all strategies. The clustering is

more pronounced for, for example, Security Selection, Directional Traders and Emerging

Markets. Another observation is that, even within the same strategy, there is a lot of

variation between funds in terms of volatility. For almost all strategies it is possible to spot

funds with volatility rarely going above, say, 5%; while some other funds are characterised

by higher volatility across the whole sampling period. A few random examples of both

cases are highlighted in Figure 5, where high-volatility funds are plotted in thick solid lines

while low-volatility funds are plotted in thick broken lines. This non-uniform behaviour

within strategies could be attributed either to the fact that the strategies do not comprise

an objective criterion as they are self-reported or that, despite following the same strategy,

some funds� speci�c investment strategies are more liable to be volatile due to speci�c

market conditions, manager characteristics etc.

To have a better idea about volatility characteristics, quantiles of the sample distrib-

ution of �tted volatility across funds are plotted at each point in time in Figure 6. With

the exception of Emerging Markets and Directional Traders, median volatility is around

or less than 5%. Moreover, across all strategies, the sample distribution of volatility is

asymmetric and skewed to the right. Another interesting observation is that the two im-

portant economic events in 2000s, the burst of the dotcom bubble (2000) and the credit

crunch (2007-2008), have clearly had an e¤ect on the tail behaviour of volatility distribu-

tions. This is most discernible for the 90% and 100% quantiles, although other quantiles

exhibit some reaction, as well. The Fund of Funds provides one extreme example where

the di¤erence between the 90% and 100% quantiles becomes enormous during these two

periods. Similar changes are observed for the Macro, Multi-Process, Fixed Income and

CTA strategies, as well. The Macro strategy is an interesting case, as its volatility distrib-

ution becomes skewed only during the two aforementioned periods while it is characterised

by symmetry otherwise. It must nevertheless be remembered that the volatility behaviour

42Note that, technically, �̂ + �̂ is always restricted to be less than one. However, practically, they may
be close to one, di¤ering only marginally from it.
43 Intercept parameters have been estimated using the concentrated likelihood method as in (15).
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does not necessarily have a direct implication on how well a given fund has performed.

This is because GARCH is a symmetric model in the sense that it does not distinguish be-

tween positive and negative shocks. So, large volatility does not necessarily imply negative

returns, although that would not be counter-intuitive.

The 90% quantile also exhibits variation across time, while the 10% quantile is rel-

atively more stable. Especially for the Security Selection, Directional Traders, Multi-

Process, Fixed Income and CTA strategies, the sample distributions are marked by higher

volatility during economic downturns.

Lastly, Figure 7 presents plots of quantiles normalised by the median. This reveals some

important points. First, with the exception of the Fixed Income strategy, the %90 quantile

always takes on values between two to four times the median. Therefore, the dispersion of

volatility distribution is more or less stable with respect to the �uctuations in the median.

Second, two types of patterns for the behaviour of extreme values (100% quantile) is

observed. For the Security Selection, Directional Traders and Emerging Markets strategies,

the size of the right-tail does not change much once normalised by median. However, even

after adjusting for the median, an increase in the right-tail is observed during one or both

of the dotcom bubble and credit crunch periods for the remaining strategies. An extreme

case is the Fund of Funds strategy which is fat-tailed throughout the whole sample even

after normalisation. Therefore, although the relative dispersion of volatility remains more

or less stable for almost all strategies, for some strategies it is more likely to observe

extremely high volatilities, even after adjusting for �uctuations in the median.

To conclude, empirical results show that the volatility behaviour of funds exhibits

variation, both within and between strategies. Some strategies, such as Multi-Process

and Fixed Income generally tend to have lower volatility. Moreover, even within the

same strategy, funds are characterised by di¤erent levels of volatility. The analysis of the

volatility sample distribution reveals that for almost all strategies, volatility distribution

exhibits large right tails, which tend to become larger during the dotcom bubble and

credit crunch episodes. Nevertheless, normalised quantiles reveal that when adjusted

for the median volatility, quantiles become more stable and behave uniformly across all

strategies. Interestingly, while for the Macro, Fund of Funds and CTA strategies the right

tail becomes heavier during economic downturns, the 90% quantile remains relatively

stable. This suggests that, while higher levels of volatility were not necessarily more

probable, �bad surprises�were more likely to happen.

9 Conclusion

This paper has analysed the �rst-order bias in nonlinear dynamic panel data models in the

presence of both time-series and cross-section dependence. Extending the analytical bias

reduction literature to the case of cross-section dependence is the main contribution of this

study to the panel data literature. In doing so, the extra bias terms that appear due to
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dependence in the time-series and cross-section dimensions have been characterised. The

theoretical investigation reveals that time-series dependence leads to an extra yet negligible

bias term. However, crucially, the extra bias term due to cross-section dependence might

not be negligible, depending on the strength of cross-section dependence. These results are

also useful in establishing the conditions under which the Arellano-Bonhomme priors can

still be safely used for bias-correction, despite the presence of two-dimensional dependence.

Furthermore, the speci�c case of spatial cross-section dependence for clustered individuals

has also been analysed. It has been shown that, under certain assumptions on the cluster

characteristics, the bias due to cross-section dependence is asymptotically negligible.

The theoretical analysis has a general scope in the sense that characterisations of extra

bias terms are provided in terms of a general nonlinear and dynamic likelihood function,

with no speci�c model in mind. Therefore, the results presented here are potentially ap-

plicable to a wide array of models. As a particular application, modelling of GARCH

e¤ects using panels with a limited number of time-series observations has been considered.

Simulations indicate that the proposed approach can successfully reduce a substantial

portion of the incidental parameter bias with 150-200 time series observations, without

increasing the standard errors. This is in stark contrast with around 1,000-1,500 obser-

vations which would be required for consistent estimation of GARCH parameters using

standard time-series methods. In an empirical analysis, hedge fund volatility character-

istics have been analysed by focusing on groups of funds following di¤erent investment

strategies. By analysing sample distributions of volatility across funds, it has been shown

that hedge fund volatilities are in general characterised by an asymmetric right-skewed

distribution and that the size of the right tail reacts to important economic events such

as the burst of the dotcom bubble and the credit crunch. Moreover, in a test of predictive

ability using stock volatility forecasts, the proposed estimation method achieved superior

forecasting performance compared to its alternatives.

Suggestions for possible extensions are in order. The clustering example was based on

one of many possible settings. It would be useful to extend the analysis to other settings

where the number of groups and the membership size for each group are allowed to grow at

di¤erent rates (or perhaps remain �xed). Naturally, such assumptions are very much linked

to the particular application at hand. Therefore, a better understanding of bias under

di¤erent settings would be bene�cial to both theoretical and applied econometricians.

The other possibility is to employ a factor structure. However, it is not clear how this

can be done when nothing is known about the likelihood�s functional form, which was the

case in this paper. On the other hand, when the underlying model is known, this is a very

e¤ective approach which can deliver closed form expressions for the small sample bias.

Especially for popular models such as the dynamic autoregressive panel or panel probit,

this research avenue would be extremely fruitful. Last but not least, more simulation and

empirical analyses have to be considered for a large variety of models in order to attain a

better understanding of the behaviour of bias and the bias-correction performance.
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A Mathematical Appendix

Remark A.1 In what follows, EiT is used as shorthand for E[`��iT ]:

A.1 Definition of �-and �-mixing

De�nition A.1 (�- and �-mixing) De�ne the �-�elds, Git = �(xit; xi;t�1; :::) and Hi
t = �(xit; xi;t+1; :::): De�ne also,

�i(m) = �i(Git ;Hi
t+m) = sup

t
sup

G2Git and H2Hi
t+m

jP (G \H)� P (G)P (H)j ;

�i(m) = �i(Git ;Hi
t+m) = sup

t
sup

G2Git ; P (G)>0 and H2Hi
t+m

jP (HjG)� P (H)j :

Then, the sequence of random vectors (xit; xi;t�1; xi;t�2; :::) is called

�-mixing if �(m) ! 0 as m!1;
�-mixing if �(m) ! 0 as m!1:

Moreover, for s 2 R; if �(m) = O(m�s��) for some � > 0; then s is said to be of size �s (and similarly for �).

A.2 A Preliminary Lemma

The following lemma will be useful in proving some of the results mentioned in this study.

Lemma A.2 Under Assumption 3.7,

�i =
1

EiT

(
� `�iT +

V ��iT `
�
iT

EiT
� 1
2

`���iT

�
`�iT
�2

E2iT
+
�V ��iT
EiT

"
V ��iT `

�
iT

EiT
� 1
2

`���iT

�
`�iT
�2

E2iT

#

�1
2

`���iT

E2iT

"
�2

V ��i
�
`�iT
�2

EiT
+
`���iT

�
`�iT
�3

E2iT

#
� 1
6

`����iT

�
`�iT
�3

E3iT

)
+Op(T

�2); (16)

�2i =
1

E2iT

"�
`�iT
�2 � 2V ��iT �`�iT �2

EiT
+
`���iT

�
`�iT
�3

E2iT

#
+Op(T

�2); (17)

�3i = � 1

E3iT

�
`�iT
�3
+Op(T

�2): (18)

Proof of Lemma A.2. Expanding `�iT (�; �̂i(�)) around �̂i(�) = ��i(�) yields

`�iT (�; �̂i(�)) = `�iT + `
��
iT �i +

1

2
`���iT �2i +

1

6
`����iT �3i +Op(T

�2)

= `�iT + V
��
iT �i + EiT �i +

1

2
`���iT �2i +

1

6
`����iT �3iT +Op(T

�2):

Then

�i =
1

EiT

�
�`�iT �

V ��iT
EiT

�
�`�iT � V ��iT �i �

1

2
`���iT �2iT

�
� 1
2
`���iT �2i �

1

6
`����iT �3i

�
+Op(T

�2)

=
1

EiT

(
� `�iT �

V ��iT
EiT

�
�`�iT �

V ��iT
EiT

�
�`�iT

�
� 1
2
`���iT �2i

�

�1
2
`���iT �2i �

1

6
`����iT �3i

)
+Op(T

�2) (19)
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Similarly,

�2i =
1

E2iT

h�
`�iT
�2
+ 2`�iTV

��
iT �i + `

�
iT `

���
iT �2i

i
+Op(T

�2)

=
1

E2iT

"�
`�iT
�2 � 2�`�iT �2 V ��iT

Ei
+ `�iT `

���
iT �2i

#
+Op(T

�2); (20)

where (19) is used to obtain (20). Substituting �2i back into (20) yields (17), while observing �
3
i = �i�

2
i gives (18). Finally,

using (17) and (18) in (19), (16) follows.
For a more detailed treatment of similar expansions, see, among others, McCullagh (1987) and Pace and Salvan (1997).

A.3 Proof of Theorem 4.1

This theorem will be proved by using a series of results. The objective is to �nd an expression for

E[`IiT (�)� `iT (�)];

which will be done in two steps by deriving �rst E[`IiT (�)� `ciT (�)] and then E[`ciT (�)� `iT (�)]:
Lemma A.3

`IiT (�)� `ciT (�) =
1

2T
ln

�
2�

T

�
� 1

2T
ln[�`��iT (�; �̂i(�))] +

1

T
ln�i(�̂i(�)) +O

�
1

T 2

�
: (21)

Proof. This proof is closely based on the exposition in Pace and Salvan (1997). The �nal expression is the same as in
Tierney, Kass and Kadane (1989). See also Davison (2003), Erdélyi (1956) and Severini (2005). De�ne

gi = �`iT (�; �i); hi = �i(�ij�);
ĝi = �`iT (�; �̂i(�)), ĥi = �i(�̂i(�)j�);

�̂i = �i � �̂i(�);

ĝ0i =
@`iT (�; �i)

@�iT

���
�i=�̂i(�)

; ĥ0i =
@�i(�ij�)
@�i

���
�i=�̂i(�)

,

and likewise for higher order derivatives. Then, expanding `i(�; �i) and �i(�ij�) around �̂i(�) and using Assumption 3.6, one
gets

gi = ĝi +
1

2
�̂
2

i ĝ
00
i +

1

6
�̂
3

i ĝ
000
i +

1

24
�̂
4

i ĝ
0000
i +O(�̂

5

i );

hi = ĥi + �̂iĥ
0
i + �̂

2

i ĥ
00
i +O(�̂

3

i ):

Now,

LIi (�) =

Z
exp[T`i(�; �i)]�i(�ij�)d�i

=

Z
exp[�Tgi]�i(�ij�)d�i

=

Z
exp

�
�T ĝi �

1

2
�̂
2

iT ĝ
00
i �

1

6
�̂
3

iT ĝ
000
i �

1

24
�̂
4

iT ĝ
0000
i +O(T �̂

5

i )

�
hid�i:

Changing the variable to zi = (�i � �̂i(�))
p
T ĝ00i and multiplying and dividing by

p
T ĝ00i = (2�) yields

44

LIi (�) =

p
2� exp(�T ĝi)p

T ĝ00i

Z
1p
2�
exp

�
�z

2
i

2

�
44Notice that � here is the pi number and not some prior.
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� exp
"
� z3i ĝ

000
i

6
p
T (ĝ00i )

3=2
� z4i ĝ

0000
i

24T (ĝ00i )
2
+O

�
1

T 3=2

�#
hidzi:

Notice that �(zi) = (2�)
�1=2

exp
�
�z2i =2

�
is the Standard Normal density for zi: Since expx = 1 + x+ x2=2 + x3=6 + :::;

LIi (�) =

p
2� exp(�T ĝi)p

T ĝ00i

�
Z "

1� z3i ĝ
000
i

6
p
T (ĝ00i )

3=2
� z4i ĝ

0000
i

24T (ĝ00i )
2
+
1

2

(ĝ000i )
2

36T (ĝ00i )
3
z6i +O

�
1

T 3=2

�#
hi�(zi)dzi

=

p
2� exp(�T ĝi)p

T ĝ00i

�
Z "

1� ĝ000i
6
p
T (ĝ00i )

3=2
z3i �

ĝ0000i
24T (ĝ00i )

2
z4i +

1

2

(ĝ000i )
2

36T (ĝ00i )
3
z6i +O

�
1

T 3=2

�#

�
"
ĥi +

ĥ0ip
T ĝ00i

zi +
ĥ00i
T ĝ00i

z2i +O

�
1

T 3=2

�#
�(zi)dzi

=

p
2� exp(�T ĝi)p

T ĝ00i

Z "
ĥi +

ĥ0ip
T ĝ00i

zi �
ĝ000i ĥi

6
p
T (ĝ00i )

3=2
z3i �

ĝ0000i ĥi
24T (ĝ00i )

2
z4i

+
1

2

(ĝ000i )
2ĥi

36T (ĝ00i )
3
z6i �

ĥ0iĝ
000
i

6T (ĝ00i )
2
z4i +

ĥ00i
T ĝ00i

z2i +O

�
1

T 3=2

�#
�(zi)dzi

=

p
2� exp(�T ĝi)p

T ĝ00i

"
ĥi �

1

8

ĝ0000i ĥi
T (ĝ00i )

2
+
5

24

(ĝ000i )
2ĥi

T (ĝ00i )
3
� 1
2

ĥ0iĝ
000
i

T (ĝ00i )
2
+

ĥ00i
T ĝ00i

+O

�
1

T 2

�#
;

where the last line follows from the fact that for standard normal random variables odd moments are equal to zero while
even moments of order n are equal to

Qn
j=1 (n� 2j + 1). Moreover, it can be checked that all O(T�3=2) terms involve odd

powers of zi implying that their expectations will all be O(T�2): Hence,

`IiT (�)� `ciT (�) =
1

T
ln

Z
exp[T`iT (�; �i)]�i(�ij�)d�i � ^̀iT (�; �̂i(�)

=
1

T
ln

8<:
p
2�=T exp

h
T ^̀iT (�; �̂i(�))

i
q
^̀��
iT (�; �̂i(�))

�
�i(�̂i(�)j�) +O

�
1

T

��9=;
�^̀iT (�; �̂i(�)

=
1

2T
ln
2�

T
� 1

2T
ln ^̀��iT (�; �̂i(�)) + ln�i(�̂i(�)j�) +O

�
1

T 2

�
:

Next, a series of Taylor approximations will be used to derive an expression for E[`IiT (�) � `ciT (�)] using (21). All
asymptotic expansions in this paper heavily make use the fact that the likelihood function and its derivatives are mixing
processes, as detailed in the set of Assumptions in Section 3. This property, along with the moment conditions in Assumption
3.10, ensures that there exist Laws of Large Numbers and Central Limit Theorems for the relevant properly normalised
likelihood terms, by, for example, Corollary 3.48 and Theorem 5.20 in White (2001).

Lemma A.4

�̂i(�)� ��i(�) =
Aip
T
+Op

�
1

T

�
; (22)

where Ai = �
p
T`�iT fE[`��iT ]g�1; E [Ai] = 0 and Ai = Op (1) 8i:

Proof. By expanding `�iT (�; �̂i(�)) around �̂i(�) = ��i(�):

`�iT (�; �̂i(�)) = `�iT + (�̂i(�)� ��i(�))E[`��iT ] + (�̂i(�)� ��i(�))V ��iT +Op(T
�1)
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= `�iT + (�̂i(�)� ��i(�))E[`��iT ] +Op(T�1):

Since `�iT (�; �̂i(�)) = 0,

�̂i(�)� ��i = �
`�iT
E[`��iT ]

+Op(T
�1):

By de�nition, E[`�iT (�; ��i(�))] = 0: Hence, de�ning AiT = �
p
T`�iT (�;

��i(�))fE
�
`��iT (�;

��i(�))
�
g�1 and noting that E[Ai] = 0

and Ai = Op(1) gives the desired result.

Lemma A.5

`��iT (�; �̂i(�)) = `��iT (�;
��i(�)) +

Bip
T
+Op

�
1

T

�
, (23)

where Bi = AiT
�1PT

t=1 E[`���it ]; E [Bi] = 0 and Bi = Op (1) :

Proof. Since `���iT and `����iT are both Op(1); expanding `��iT (�; �̂i(�)) around �̂i(�) = ��i(�); and using (22) yields

`��iT (�; �̂i(�)) = `��iT +

�
Aip
T
+Op(T

�1)

�
`���iT +Op(T

�1) = `��iT +
Aip
T
`���iT +Op(T

�1):

Then,

`��iT (�; �̂i(�)) = `��iT +
Aip
T

1

T

TX
t=1

E[`���it ] +Op(T
�1)

= `��iT +
Bip
T
+Op(T

�1);

since, Bi = AiT
�1PT

t=1 E[`���it ]: Moreover, E [Bi] = 0 and Bi = Op (1) ; since Ai and T�1
PT

t=1E[`
���
it ] are both Op(1) and

E[Bi] = E

(
Ai
1

T

TX
t=1

E[`���it ]

)
= E[Ai]

1

T

TX
t=1

E[`���it ] = 0:

Lemma A.6

`��iT (�; �̂i(�)) =
Cip
T
+
1

T

TX
t=1

E[`��it (�; ��i(�))] +Op
�
1

T

�
, (24)

where Ci = Bi +
p
T
n
`��iT � T�1

PT
t=1 E[`��it ]

o
; E [Ci] = 0 and Ci = Op (1) :

Proof. Using (23),

`��iT (�; �̂i(�)) =

p
TV ��iTp
T

+
1

T

TX
t=1

E[`��it ] +
Bip
T
+Op(T

�1);

=
Cip
T
+
1

T

TX
t=1

E[`��it ] +Op(T�1):

So,
E [Ci] = E [Bi] +

p
TE[V ��iT ] = 0 and Ci = Op (1) :

Lemma A.7

E�0;�i0
n
ln[�`��iT (�; �̂i(�))]

o
= lnf�E[`��iT (�; ��i(�))]g+O

�
1

T

�
: (25)

Proof. Using (24),

`��iT (�; �̂i(�)) = T�1
TX
t=1

E[`��it ] +
Cip
T
+Op(T

�1) = E[`��iT ] +
Cip
T
+Op(T

�1);
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Then
`��iT (�; �̂i(�))

E[`��iT ]
= 1 +

Cip
TE[`��iT ]

+Op(T
�1);

and

ln

(
`��iT (�; �̂i(�))

E[`��iT ]

)
= ln

(
1 +

Cip
TE[`��iT ]

+Op(T
�1)

)
:

Expanding ln(1 + x) around 1 + ~x where x = CifE[`��iT ]
p
Tg�1 +Op(T�1) and ~x = 0;

ln

(
1 +

Ci

E[`��iT ]
p
T
+Op(T

�1)

)
=

Ci

E[`��iT ]
p
T
+Op(T

�1):

Hence,

ln

(
�`��iT (�; �̂i(�))
�E[`��iT ]

)
=

Ci

E[`��iT ]
p
T
+Op(T

�1);

and

lnf�`��iT (�; �̂i(�))g = lnf�E[`��iT ]g+
Ci

E[`��iT ]
p
T
+Op(T

�1); (26)

implying

E[lnf�`��iT (�; �̂i(�))g] = E[lnf�E[`��iT ]g] +
E[Ci]

E[`��iT ]
p
T
+ E[Op(T

�1)]

= lnf�E[`��iT ]g+O
�
T�1

�
:

Lemma A.8

E�0;�i0
h
ln�i(�̂i(�)j�)

i
= ln�i(��i(�)j�) +O

�
1

T

�
: (27)

Proof. Expanding ln�i(�̂i(�)j�) around �̂i(�) = ��i(�),

ln�i(�̂i(�)j�) = ln�i(��i(�)j�) +
@ ln�i(��i(�)j�)

@�i
(�̂i(�)� ��i(�)) +Op(T�1); (28)

which implies that,

E[ln�i(�̂i(�)j�)] = E
�
ln�i(��i(�)j�)

�
+
@ ln�i(��i(�)j�)

@�i
E[�̂i(�)� ��i(�)] +O(T�1)

= ln�i(��i(�)j�) +O
�
T�1

�
:

Using the results so far, an expression for E�0;�i0
�
`Ii (�)� `ci (�)

�
is given in the next proposition.

Proposition A.1

E�0;�i0
�
`Ii (�)� `ci (�)

�
= C � 1

2T
ln

�
�T�1

XT

t=1
E[`��it ]

�
+
1

T
ln�i

�
��i(�)j�

�
+O

�
1

T 2

�
: (29)

Proof. Taking the expectation of (21) gives

E
�
`IiT (�)� `ciT (�)

�
=

1

2T
ln

�
2�

T

�
� 1

2T
Efln[�`��iT (�; �̂i(�))]g+

1

T
E[ln�i(�̂i(�)j�)] +O

�
1

T 2

�
:
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Using C = (2T )�1 ln
�
2�T�1

�
and substituting (25) and (27), (29) follows.

Proposition A.2 The �rst-order bias of the concentrated likelihood with respect to the target likelihood is given by

E
h
`ciT (�; �̂i)� `iT (�; ��i)

i
= �1

2

E[(`�iT )2]
E[`��iT ]

+
1

2

E[V ��iT
�
`�iT
�2
]�

E[`��iT ]
	2

�1
6

E[(`�iT )3]E[`���iT ]�
E[`��iT ]

	3 +Op(
1

T 2
): (30)

Proof. Expanding `iT (�; �̂i(�)) around �̂i(�) = ��i(�) gives

`iT (�; �̂i (�))� `i = `�iT (�̂i(�)� ��i(�)) +
1

2
`��iT (�̂i(�)� ��i(�))2 +

1

6
`���iT (�̂i(�)� ��i(�))3 +Op(T�2):

Using Lemma A.2,

`�iT (�̂i(�)� ��i(�)) = �
�
`�iT
�2

E[`��iT ]
+
V ��iT

�
`�iT
�2�

E[`��iT ]
	2 � 12 E[`���iT ]

�
`�iT
�3�

E[`��iT ]
	3 +Op(T

�2);

`��iT (�̂i(�)� ��i(�))2 =

�
`�iT
�2

E[`��iT ]
�
�
`�iT
�2
V ��iT�

E[`��iT ]
	2 +

�
`�iT
�3 E[`���iT ]�
E[`��iT ]

	3 +Op(T
�2);

`���iT (�̂i(�)� ��i(�))3 = �
�
`�iT
�3
E[`���iT ]�

E[`��iT ]
	3 +Op(T

�2);

which implies that

E[`iT (�; �̂i (�))� `iT ] = �E[(`
�
iT )

2]

E[`��iT ]
+
E[V ��iT

�
`�iT
�2
]�

E[`��iT ]
	2 � 1

2

E[`���iT ]E[(`�iT )3]�
E[`��iT ]

	3
+
1

2

E[(`�iT )2]
E[`��iT ]

� 1
2

E[V ��iT (`�iT )2]�
E[`��iT ]

	2 +
1

2

E[(`�iT )3]E[`���iT ]�
E[`��iT ]

	3
�1
6

E[(`�iT )3]E[`���iT ]�
E[`��iT ]

	3 +Op(T
�2)

= �1
2

E[(`�iT )2]
E[`��iT ]

+
1

2

E[V ��iT
�
`�iT
�2
]�

E[`��iT ]
	2 � 1

6

E[(`�iT )3]E[`���iT ]�
E[`��iT ]

	3 +Op(T
�2):

Finally, the proof of Theorem 4.1 follows.
Proof. (Theorem 4.1) Using (29) and (30) gives (3), (4) and (5).

A.4 Proof of Theorem 5.1

The proof is based on a fourth-order Taylor expansion of the integrated likelihood functions at �̂IL = �0: As � is a P � 1
vector, such an expansion can get complicated and intractable very quickly. For that reason, this proof will heavily be based
on the index notation. The main advantage of this notation is that it enables working on multi-dimensional arrays in almost
the same fashion as scalars. Before the proof, a short overview of this convention is given.

A.4.1 A Short Overview of Index Notation

A convenient method to do algebraic manipulations with high dimensional arrays is to use the index notation utilised for
e.g. tensors. This is a concise way of displaying arrays. For example take some P -dimensional vector, � = (�1; :::; �P )

0
:

Using the index notation, this vector can also be written as [�r]; r = 1; :::; P: Similarly, for a P � Q matrix A; where the
row i column j entry is denoted by Aij (i = 1; :::; P and j = 1; :::; Q), the index notation representation is given by [Aij ]:
Although the convenience of this notation is not immediately obvious for one- or two-dimensional arrays, it is very useful
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for cases where higher order arrays are considered. For a detailed explanation, see McCullagh (1984) and McCullagh (1987),
which is a classical reference. Pace and Salvan (1997, Chapter 9) provide a more approachable treatment and illustrate many
important asymptotic expansions for the multivariate case.

In the case at hand, � = [�r] where r 2 f1; :::; Pg: In the following, to make the notation less cumbersome, indices and
subscripts are dropped whenever variables can be distinguished by context. For example, instead of V ��iT ; simply V is used.
Also, for a given function f (�) ; and a P dimensional parameter vector � = [�p]; p = 1; :::; P; de�ne the generic m

th order
derivative as

fr1;:::;rm =
dmf (�)

d�r1d�r2 :::d�rm
where r1; r2; :::; rm 2 f1; :::; Pg

Then, for example,
dmV ��iT

d�r1 :::d�rm
=

dmV

d�r1 :::d�rm
= Vr1;:::;rm ;

gives an m-dimensional array.
Another convention used here is the Einstein summation convention. The idea is to write summations implicitly by

observing that, when an index appears twice in a product of arrays, the product is summed across that index. For example,
for two arrays xp and yqp, where p; q = 1; :::; P; the summation

PP
p=1 x

pyqp is implicit in x
pyqp as p appears twice in the same

product. Indices that are not repeated within the same product are called free indices, and the number of these indices
determines the dimension of the resulting array. Indices that are repeated, on the other hand, are called dummy indices.
As such, xpyqp is a vector (one free index, q), while x

p
rsty

q
pz
rt is a matrix (two free indices, q and s). Note that the notation

for the indices can be changed freely as long their relationship is left intact. For example, xpqy
q
r is identical to x

q
py
p
r ; but of

course xpqy
r
p is a di¤erent object.

Again, to keep notation simple, the following de�nitions will be used.

` = `iT (�0; ��i(�0)); `r =
d`iT (�; ��i(�))

d�r

���
�=�0

; `r;s =
d2`iT (�; ��i(�))

d�rd�s

���
�=�0

; etc.

~̀=
1

N

NX
i=1

`; ~̀
a =

1

N

NX
i=1

`a; ~̀
a;b =

1

N

NX
i=1

`a;b etc.

�a;b = E[~̀a;b]; �a;b;c = E[~̀a;b;c] etc.

Ha;b = ~̀a;b � �a;b; Ha;b;c = ~̀a;b;c � �a;b;c etc.

where r; s 2 f1; :::; Pg: In addition,

UiT = `�iT (�0;
��i(�0)); EiT = E[`��iT (�0; ��i(�0))], FiT = E[`���iT (�0; ��i(�0))];

�iT = ln�i(��iT (�0)j�0) and ��iT =
@ ln�i(��iT (�)j�)

@�i

���
�=�0

:

Lastly, de�ne
�rI = (�̂IL � �0)r where r 2 f1; :::; Pg

and (�̂IL � �0)r is the rth entry of the vector (�̂IL � �0): Notice that �rI here does not mean the rth power of �I :

A.4.2 A Preliminary Lemma

The following lemma (the proof of which is given at the end of the next section) will be useful in proving Proposition 5.1.
Remember that, for notational conciseness, all subscripts such as iT and superscripts denoting derivatives are dropped. Index
notation is used to denote derivatives with respect to �. Hence, for example, Vr1 is used shorthand for r�r1V

��
iT (�0): In this

particular case, since V ���iT does not appear in the derivations below, this notation is not confusing.

Lemma A.9

r� ln(�EiT ) = �Er1
E

= O (1) ;

r�� ln(�EiT ) = �Er1;r2
E

+
Er1Er2
E2

= O (1) ;
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r�
�
V ��iT
EiT

�
=

Vr1
E
� V Er1

E2
= Op

�
1p
T

�
;

r��
�
V ��iT
EiT

�
=

Vr1;r2
E

� Vr1Er2 [2] + V Er1;r2
E2

+ 2
V Er1Er2

E3
= Op

�
1p
T

�
;

r�
�
`�iTFiT
E2iT

�
=

Ur1F + UFr1
E2

� 2UFEr1
E3

= Op

�
1p
T

�
;

r��
�
`�iTFiT
E2iT

�
=

Ur1;r2F + Ur1Fr2 [2] + UFr1;r2
E2

� 2Ur1Er2F [2] + UEr2Fr1 [2] + UFEr1;r2
E3

+6
UFEr1Er2

E4

= Op

�
1p
T

�
;

r�
�
`�iT
��iT

EiT

�
=

Ur1
�� + U ��r1
E

� U ��Er1
E2

= Op

�
1p
T

�
;

r��
�
`�iT
��iT

EiT

�
=

Ur1;r2
�� + Ur1

��r2 [2] + U
��r1;r2

E
� Ur1

��Er2 [2] + U
��r1Er2 [2] + U

��Er1;r2
E2

+2
U ��Er1Er2

E3

= Op

�
1p
T

�
;

r�

"�
`�iT
�2

EiT

#
= 2

UUr1
E

� U2Er1
E2

= Op

�
1

T

�
;

r��

"�
`�iT
�2

EiT

#
= 2

Ur2Ur1 + UUr1;r2
E

� 2UUr2Er1 [2] + U
2Er1;r2

E2
+ 2

U2Er1Er2
E3

= Op

�
1

T

�
;

r�

"
V ��iT

�
`�iT
�2

E2iT

#
=

Vr1U
2 + 2V UUr1
E2

� 2V U
2Er1
E3

= Op

�
1

T 3=2

�
;

r��

"
V ��iT

�
`�iT
�2

E2iT

#
=

Vr1;r2U
2 + 2Vr1UUr2 [2] + 2V Ur2Ur1 + 2V UUr1;r2

E2

�2Vr1U
2Er2 [2] + 2V UUr1Er2 [2] + V U

2Er1;r2
E3

+ 6
V U2Er1Er2

E4

= Op

�
1

T 3=2

�
;

r�
�
(`�iT )

3FiT
E3iT

�
=

3U2Ur1F + U
3Fr1

E3
� 3U

3FEr1
E4

= Op

�
1

T 3=2

�
;

r��
�
(`�iT )

3FiT
E3iT

�
=

6UUr2Ur1F + 3U
2Ur1;r2F + 3U

2Ur1Fr2 [2] + U
3Fr1;r2

E3

�33U
2Ur1FEr2 [2] + U

3Fr1Er2 [2] + U
3FEr1;r2

E4
+ 12

U3FEr1Er2
E5

= Op

�
1

T 3=2

�
:

Moreover, the third and fourth derivatives satisfy,

r��� ln(�EiT ) = O (1) ; r���� ln(�EiT ) = O (1) ;

r���
�
V ��iT
EiT

�
= Op

�
1p
T

�
; r����

�
V ��iT
EiT

�
= Op

�
1p
T

�
;
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r���
�
`�iTFiT
E2iT

�
= Op

�
1p
T

�
; r����

�
`�iTFiT
E2iT

�
= Op

�
1p
T

�
;

r���
�
`�iT
��iT

EiT

�
= Op

�
1p
T

�
: r����

�
`�iT
��iT

EiT

�
= Op

�
1p
T

�
;

r���

"�
`�iT
�2

EiT

#
= Op

�
1

T

�
; r����

"�
`�iT
�2

EiT

#
= Op

�
1

T

�
;

r���

"
V ��iT

�
`�iT
�2

E2iT

#
= Op

�
1

T 3=2

�
; r����

"
V ��iT

�
`�iT
�2

E2iT

#
= Op

�
1

T 3=2

�
;

r���
�
(`�iT )

3FiT
E3iT

�
= Op

�
1

T 3=2

�
; r����

�
(`�iT )

3FiT
E3iT

�
= Op

�
1

T 3=2

�
:

A.4.3 The Proof

The starting point is

`IiT (�) = `iT (�; ��i(�)) + C �
1

2T

�
ln(�EiT ) +

V ��iT
EiT

� `�iT (�;
��i(�))FiT
E2iT

�
+
1

T

�
ln�iT (��iT (�)j�)�

`�iT (�;
��i(�))

EiT

@ ln�iT (�ij�)
@�i

���
�i=��iT (�)

�
�1
2

�
`�iT (�;

��i(�))
�2

EiT
+
1

2

V ��iT
�
`�iT (�;

��i(�))
�2

(EiT )
2

�1
6

(`�iT (�;
��i(�)))

3FiT
E3iT

+Op(T
�2); (31)

where C = (2T )�1 ln (2�=T ). The �rst line follows from using (26) and (28) to substitute for ln[�`��iT (�; �̂i(�))] and
ln�i(�̂i(�)), respectively, in (21). Notice that the expression given by (28) is a function of [�̂i(�) � ��i(�)]; which has to
be substituted by (16), up to a Op(T�2) term. The last two lines are obtained by adding `iT (�; �̂i (�))� `iT (�; ��i (�)), which
is calculated by using the arguments in the Proof of Proposition A.2.

By a multivariate Taylor expansion of `Ir1(�̂IL) around �̂IL = �0;

1

N

NX
i=1

`Ir1(�̂IL) =
1

N

NX
i=1

`Ir1(�0) +

"
1

N

NX
i=1

`Ir1;r2(�0)

#
�r2I +

1

2

"
1

N

NX
i=1

`Ir1;r2;r3(�0)

#
�r2I �

r3
I

+
1

6

"
1

N

NX
i=1

`Ir1;r2;r3;r4(�0)

#
�r2I �

r3
I �

r4
I

+
1

24

"
1

N

NX
i=1

`Ir1;r2;r3;r4;r5(
��)

#
�r2I �

r3
I �

r4
I �

r5
I ; (32)

where r1; :::; r5 2 f1; :::; Pg and de�ning the jth entry of �� as �j ; �j 2 [min(�̂IL;j ; �0;j);max(�̂IL;j ; �0;j)]: In the worst case ofp
T -convergence (rather than the

p
NT -convergence observed under cross-section dependence) it is expected that

`Ir1;r2;r3;r4;r5(
��)�r2I �

r3
I �

r4
I �

r5
I = Op(T

�2):

Notice that the expansion gives a vector.
The integrated likelihood is not a familiar concept. Instead, the concentrated likelihood would be much more convenient

intuitive to work with. This is made possible by using (31) to obtain target-likelihood based approximations for integrated-
likelihood derivatives appearing on the right-hand side of (32). These approximations are then substituted for relevant
integrated likelihood derivatives in (32). This leads to the next lemma.
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Lemma A.10

��r2I �r1;r2 = ~̀
r1 +D1;r1 + �r2I Hr1;r2 +

1

2
�r2I �

r3
I �r1;r2;r3 +D3;r1

+�r2I D2;r1;r2 +
1

2
�r2I �

r3
I Hr1;r2;r3 +

1

6
�r2I �

r3
I �

r4
I �r1;r2;r3;r4 +Op

�
1

T 2

�
: (33)

where

D1;r1 =
1

TN

NX
i=1

Er1
2E

+
1

TN

NX
i=1

�r1 �
1

N

NX
i=1

UUr1
E

+
1

N

NX
i=1

U2Er1
2E2

= Op

�
1

T

�
;

D2;r1;r2 =
1

TN

NX
i=1

Er1;r2
2E

� 1

TN

NX
i=1

Er1Er2
2E2

+
1

TN

NX
i=1

�r1;r2 �
1

N

NX
i=1

Ur2Ur1 + UUr1;r2
E

+
1

N

NX
i=1

2U (Ur1Er2 + Ur2Er1) + U
2Er1;r2

2E2
� 1

N

NX
i=1

U2Er1Er2
E3

= Op

�
1

T

�
;

D3;r1 =
1

TN

NX
i=1

V Er1 + Ur1F + UFr1 + U
��Er1

2E2
� 1

TN

NX
i=1

UFEr1
E3

� 1

TN

NX
i=1

Vr1 + Ur1
�� + U ��r1
E

+
1

N

NX
i=1

Vr1U
2 + 2V UUr1
2E2

� 1
N

NX
i=1

3U2Ur1F + U
3Fr1 + V U

2Er1
6E3

+
1

N

NX
i=1

U3FEr1
2E4

= Op

�
1

T 3=2

�
:

Proof. First, derivatives of (31) with respect to � have to obtained. This is achieved by simply substituting the results given
in Lemma A.9 as necessary. Then,

`Ir1 (�0) = `r1 (�0) +
1

T

�
Er1
2E

+�r1

�
� UUr1

E
+
U2Er1
2E2

+
1

T

�
V Er1
2E2

� Vr1
2E

+
Ur1F + UFr1

2E2
� UFEr1

E3
+
U ��Er1
E2

� Ur1
�� + U ��r1
E

�
+
Vr1U

2 + 2V UUr1
2E2

� V U2Er1
E3

� 3U
2Ur1F + U

3Fr1
6E3

+
U3FEr1
2E4

+Op

�
1

T 2

�
;

`Ir1;r2 (�0) = `r1;r2 (�0) +
1

T

�
Er1;r2
2E

� Er1Er2
2E2

+�r1;r2

�
� Ur2Ur1 + UUr1;r2

E

+
2U (Ur1Er2 + Ur2Er1) + U

2Er1;r2
2E2

� U2Er1Er2
E3

+Op

�
1

T 3=2

�
;

`Ir1;r2;r3 (�0) = `r1;r2;r3 (�0) +Op

�
1

T

�
;

`Ir1;r2;r3;r4 (�0) = `r1;r2;r3;r4 (�0) +Op

�
1

T

�
:
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Substituting these expansions for the integrated likelihood derivatives into (32) gives

~̀I
r1(�̂IL) = ~̀

r1

�
�0; ��i(�0)

�
+
1

T

"
1

N

NX
i=1

Er1
2E

+
1

N

NX
i=1

�r1

#
� 1

N

NX
i=1

UUr1
E

+
1

N

NX
i=1

U2Er1
2E2

+
1

T

"
1

N

NX
i=1

V Er1
2E2

� 1

N

NX
i=1

Vr1
2E

+
1

N

NX
i=1

Ur1F + UFr1
2E2

� 1
N

NX
i=1

UFEr1
E3

+
1

N

NX
i=1

U�Er1
E2

� 1

N

NX
i=1

Ur1
�� + U ��r1
E

#

+
1

N

NX
i=1

Vr1U
2 + 2V UUr1
2E2

� 1

N

NX
i=1

V U2Er1
E3

� 1

N

NX
i=1

3U2Ur1F + U
3Fr1

6E3

+
1

N

NX
i=1

U3FEr1
2E4

+

(
~̀
r1;r2 +

1

T

"
1

N

NX
i=1

Er1;r2
2E

� 1

N

NX
i=1

Er1Er2
2E2

+
1

N

NX
i=1

�r1;r2

#

� 1
N

NX
i=1

Ur2Ur1 + UUr1;r2
E

+
1

N

NX
i=1

2U (Ur1Er2 + Ur2Er1) + U
2Er1;r2

2E2

� 1
N

NX
i=1

U2Er1Er2
E3

)
�r2I +

1

2
~̀
r1;r2;r3�

r2
I �

r3
I +

1

6
~̀
r1;r2;r3;r4�

r2
I �

r3
I �

r4
I

+Op

�
1

T 2

�
Noting that ~̀Ir1(�̂IL) = 0 for r1 2 f1; :::; Pg and rearranging terms according to their stochastic orders of magnitude yields

0 = ~̀
r1

�
�0; ��i(�0)

�
+ �r2I

~̀
r1;r2

+
1

T

"
1

N

NX
i=1

Er1
2E

+
1

N

NX
i=1

�r1

#
� 1

N

NX
i=1

UUr1
E

+
1

N

NX
i=1

U2Er1
2E2

+
1

2
�r2I �

r3
I
~̀
r1;r2;r3

+
1

T

"
1

N

NX
i=1

V Er1 + Ur1F + UFr1 + U
��Er1

2E2
� 1

N

NX
i=1

Vr1
2E

� 1

N

NX
i=1

UFEr1
E3

� 1
N

NX
i=1

Ur1
�� + U ��r1
E

#
+
1

N

NX
i=1

Vr1U
2 + 2V UUr1
2E2

� 1

N

NX
i=1

3U2Ur1F + U
3Fr1 + V U

2Er1
6E3

+
1

N

NX
i=1

U3FEr1
2E4

+ �r2I

(
1

TN

NX
i=1

Er1;r2
2E

� 1

TN

NX
i=1

Er1Er2
2E2

+
1

TN

NX
i=1

�r1;r2

� 1
N

NX
i=1

Ur2Ur1 + UUr1;r2
E

+
1

N

NX
i=1

2U (Ur1Er2 + Ur2Er1) + U
2Er1;r2

2E2
� 1

N

NX
i=1

U2Er1Er2
E3

)

+
1

6
~̀
r1;r2;r3;r4�

r2
I �

r3
I �

r4
I +Op

�
1

T 2

�
:

Then, using Assumption 3.11,

��r2I �r1;r2 = ~̀
r1

�
�0; ��i(�0)

�
+�r2I Hr1;r2 +

1

T

"
1

N

NX
i=1

Er1
2E

+
1

N

NX
i=1

�r1

#
� 1

N

NX
i=1

UUr1
E

+
1

N

NX
i=1

U2Er1
2E2

+
1

2
�r2I �

r3
I �r1;r2;r3 + �

r2
I �

r3
I

1

2
Hr1;r2;r3
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+
1

6
�r2I �

r3
I �

r4
I �r1;r2;r3;r4 +

1

T

"
1

N

NX
i=1

V Er1 + Ur1F + UFr1 + U
��Er1

2E2

� 1
N

NX
i=1

Vr1 + Ur1
�� + U ��r1
2E

� 1

N

NX
i=1

UFEr1
E3

#

+
1

N

NX
i=1

Vr1U
2 + 2V UUr1
2E2

� 1

N

NX
i=1

3U2Ur1F + U
3Fr1 + V U

2Er1
6E3

+
1

N

NX
i=1

U3FEr1
2E4

+ �r2I

(
1

TN

NX
i=1

Er1;r2
2E

� 1

TN

NX
i=1

Er1Er2
2E2

+
1

TN

NX
i=1

�r1;r2 �
1

N

NX
i=1

Ur2Ur1 + UUr1;r2
E

+
1

N

NX
i=1

2U (Ur1Er2 + Ur2Er1) + U
2Er1;r2

2E2
� 1

N

NX
i=1

U2Er1Er2
E3

)

+Op

�
1

T 2

�
;

or, more concisely,

��r2I �r1;r2 = ~̀
r1

�
�0; ��i(�0)

�
+D1;r1 + �r2I Hr1;r2 + �

r2
I �

r3
I

1

2
�r1;r2;r3

+D3;r1 + �r2I D2;r1;r2 +
1

2
�r2I �

r3
I Hr1;r2;r3 +

1

6
�r2I �

r3
I �

r4
I �r1;r2;r3;r4 +Op

�
1

T 2

�
;

which is the desired result.
Notice that, by de�nition, (�̂IL � �0) = [�r2I ]; where r2 2 f1; :::; Pg: The expansion given by (33) is, intuitively, a

polynomial of (�̂IL � �0): To obtain an expansion for (�̂IL � �0) that is not a function of itself, (33) has to be inverted using
the iterative substitution method. This is achieved by repeatedly substituting for �r2I ; �

r3
I and �r4I .

Lemma A.11

�mI = �~̀a�a;m + ~̀a�a;bHc;b�
c;m �D1;a�a;m �

1

2
~̀
a�
a;b ~̀

c�
c;d�e;b;d�

e;m

+
1

2
~̀
a�
a;b ~̀

c�
c;d�e;b;d�

e;fHg;f�
g;m � ~̀a�a;bHc;b�

c;dHe;d�
e;m

�1
2
D1;a�a;b ~̀c�c;d�e;b;d�e;m +

1

2
~̀
a�
a;bHc;b�

c;d ~̀
e�
e;f�g;d;f�

g;m

�1
4
~̀
a�
a;b ~̀

c�
c;d�e;b;d�

e;f ~̀
g�
g;h�i;f;h�

i;m �D3;a�a;m

+~̀a�
a;bD2;c;b�c;m �

1

2
~̀
a�
a;b ~̀

c�
c;dHe;b;d�

e;m

+
1

6
~̀
a�
a;b ~̀

c�
c;d ~̀

e�
e;f�g;b;d;f�

g;m +Op

�
1

T 2

�
;

where a; b; c; d; e; f; g; h; i;m 2 f1; :::; Pg:
Remark A.2 In what follows, only when �r1;r2;::: is concerned, superscripts indicate the corresponding entry of the inverse
of �r1;r2;:::: For example, if the matrix of expectations of second order likelihood derivatives with respect to � is given by
�00 = [�r1;r2 ]; then (�

00)�1 = [�r1;r2 ]:

Proof. The objective is to obtain an expression for a generic element of (�̂IL��0); �mI : To do this, �rst �mI has to be isolated
on the left-hand side. This cannot be done simply by replacing r2 by m as �r2I appears on both sides of (33). However, notice
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that if X�1 = [xrs] is the inverse of X = [xrs]; then

xrsxst = �rt =

(
1 if r = t
0 if r 6= t

:

The array �rt is known as Kronecker delta, and [�
r
t ] is the identity matrix (note that the common notation for Kronecker

delta is �rt ; however, as � is used elsewhere, � is used here to avoid confusion). Hence,

�r2I �r1;r2�
r1;m = �r2I �

m
r2 =

(
�mI if r2 = m
0 if r2 6= m

:

De�ne the following additional notation

~̀b = ~̀
a�
a;b; Hm

b = Ha;b�
a;m; Hm

b;c;d;::: = Ha;b;c;d;:::�
a;m;

Dm1 = D1;r1�r1;m; Dm2;r2 = D2;r1;r2�
r1;m; Dm3 = D3;r1�r1;m;

and remember that superscripts indicate the inverse for � only. Then, multiplying both sides of (33) by �r1;m

�mI = �
"
~̀
r1�

r1;m +D1;r1�r1;m + �r2I Hr1;r2�
r1;m +

1

2
�r2I �

r3
I �r1;r2;r3�

r1;m +D3;r1�r1;m

+�r2I D2;r1;r2�r1;m +
1

2
�r2I �

r3
I Hr1;r2;r3�

r1;m +
1

6
�r2I �

r3
I �

r4
I �r1;r2;r3;r4�

r1;m

#

+Op

�
1

T 2

�
: (34)

The iterative substitution method can now be conducted. For convenience, write �r2I ; �
r3
I and �r4I as follows, on the basis of

(34).

�r2I = �
"
~̀
a�
a;r2 +D1;a�a;r2 + �bIHa;b�

a;r2 +
1

2
�bI�

c
I�a;b;c�

a;r2 +D3;a�a;r2

+�bID2;a;b�a;r2 +
1

2
�bI�

c
IHa;b;c�

a;r2 +
1

6
�bI�

c
I�
d
I�a;b;c;d�

a;r2

#
+Op

�
1

T 2

�
;

�r3I = �
"
~̀
e�
e;r3 +D1;e�e;r3 + �fIHe;f�

e;r3 +
1

2
�fI �

g
I�e;f;g�

e;r3 +D3;e�e;r3

+�fID2;e;f�
e;r3 +

1

2
�fI �

g
IHe;f;g�

e;r3 +
1

6
�fI �

g
I�
h
I �e;f;g;h�

e;r3

#
+Op

�
1

T 2

�
; (35)

�r4I = �
"
~̀
i�
i;r4 +D1;i�i;r4 + �jIHi;j�

i;r4 +
1

2
�jI�

k
I�i;j;k�

i;r4 +D3;i�i;r4

+�jID2;i;j�
i;r4 +

1

2
�jI�

k
IHi;j;k�

i;r4 +
1

6
�jI�

k
I �
l
I�i;j;k;l�

i;r4

#
+Op

�
1

T 2

�
: (36)

Notice that a di¤erent set of dummy indices is used in each case, to avoid confusion. Now, start by substituting for �r2I to
obtain

�mI = �~̀r1�r1;m �D1;r1�r1;m

+

�
~̀
a�
a;r2 +D1;a�a;r2 + �bIHa;b�

a;r2 +
1

2
�bI�

c
I�a;b;c�

a;r2

�
Hr1;r2�

r1;m

+
1

2

�
~̀
a�
a;r2 +D1;a�a;r2 + �bIHa;b�

a;r2 +
1

2
�bI�

c
I�a;b;c�

a;r2

�
�r3I �r1;r2;r3�

r1;m
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�D3;r1�r1;m + ~̀a�a;r2D2;r1;r2�r1;m +
1

2
~̀
a�
a;r2�r3I Hr1;r2;r3�

r1;m

+
1

6
~̀
a�
a;r2�r3I �

r4
I �r1;r2;r3;r4�

r1;m +Op

�
1

T 2

�
= �~̀r1�r1;m �D1;r1�r1;m

+

�
~̀
a�
a;r2 +D1;a�a;r2 � ~̀w�w;bHa;b�

a;r2 +
1

2
~̀
w�

w;b ~̀
y�
y;c�a;b;c�

a;r2

�
Hr1;r2�

r1;m

+
1

2

�
~̀
a�
a;r2 +D1;a�a;r2 � ~̀w�w;bHa;b�

a;r2 +
1

2
~̀
w�

w;b ~̀
y�
y;c�a;b;c�

a;r2

�
�r3I �r1;r2;r3�

r1;m

�D3;r1�r1;m + ~̀a�a;r2D2;r1;r2�r1;m +
1

2
~̀
a�
a;r2�r3I Hr1;r2;r3�

r1;m

+
1

6
~̀
a�
a;r2�r3I �

r4
I �r1;r2;r3;r4�

r1;m +Op

�
1

T 2

�
:

Next, (35) and (36) are substituted for �r3I and �r4I , respectively, which yields

�mI = �~̀r1�r1;m �D1;r1�r1;m

+

�
~̀
a�
a;r2 +D1;a�a;r2 � ~̀w�w;bHa;b�

a;r2 +
1

2
~̀
w�

w;b ~̀
y�
y;c�a;b;c�

a;r2

�
Hr1;r2�

r1;m

�1
2

�
~̀
a�
a;r2 +D1;a�a;r2 � ~̀w�w;bHa;b�

a;r2 +
1

2
~̀
w�

w;b ~̀
y�
y;c�a;b;c�

a;r2

�
~̀
e�
e;r3�r1;r2;r3�

r1;m

�D3;r1�r1;m + ~̀a�a;r2D2;r1;r2�r1;m �
1

2
~̀
a�
a;r2 ~̀

e�
e;r3Hr1;r2;r3�

r1;m

+
1

6
~̀
a�
a;r2 ~̀

e�
e;r3 ~̀

i�
i;r4�r1;r2;r3;r4�

r1;m +Op

�
1

T 2

�
:

Finally, ordering terms according to the stochastic order of magnitude and rede�ning the dummy indices to simplify the
expression, the asymptotic expansion for �mI is given by,

�mI = �~̀a�a;m + ~̀a�a;bHc;b�
c;m �D1;a�a;m �

1

2
~̀
a�
a;b ~̀

c�
c;d�e;b;d�

e;m

+
1

2
~̀
a�
a;b ~̀

c�
c;d�e;b;d0�

e;fHg;f�
g;m � ~̀a�a;bHc;b�

c;dHe;d�
e;m

�1
2
D1;a�a;b ~̀c�c;d�e;b;d�e;m +

1

2
~̀
a�
a;bHc;b�

c;d ~̀
e�
e;f�g;d;f�

g;m

�1
4
~̀
a�
a;b ~̀

c�
c;d�e;b;d�

e;f ~̀
g�
g;h�i;f;h�

i;m �D3;a�a;m + ~̀a�a;bD2;c;b�c;m

�1
2
~̀
a�
a;b ~̀

c�
c;dHe;b;d�

e;m +
1

6
~̀
a�
a;b ~̀

c�
c;d ~̀

e�
e;f�g;b;d;f�

g;m

+Op

�
1

T 2

�
;

which proves Lemma A.11.
Based on these results, the proof of Theorem 5.1 now follows.

Proof (Theorem 5.1). Follows directly from Lemma A.11, by observing that, �~̀a�a;m isOp(N��1=2T�1=2); ~̀a�
a;bHc;b�

c;m�
D1;a�a;m � 1

2
~̀
a�
a;b ~̀

c�
c;d�e;b;d�

e;m is Op(T�1) and the remaining terms up to the Op(T�2) remainder are all at most
Op
�
T�3=2

�
independent of the particular values of �1; �2 and �3. Then, writing the �rst two lines in matrix notation

�nally gives (6).
Finally, this section ends with the proof of Lemma A.9.

Proof (Lemma A.9). The proof of Lemma A.9 is tedious but straightforward. To save space, proofs for V ��iT
�
`�iT
�2
(EiT )

�2

and ln(�EiT ) will be given only. The rest of the proofs follow along similar lines. Start with ln(�EiT ): To keep notation
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simple, de�ne E = EiT , which is a scalar. Then,

r� ln(�EiT ) = �Er1
E
;

r�� ln(�EiT ) = �Er1;r2
E

+
Er1Er2
E2

r��� ln(�EiT ) = �Er1;r2;r3
E

+
Er1;r2Er3 + Er1;r3Er2 + Er2;r3Er1

E2
� 2Er1Er2Er3

E3
;

= �Er1;r2;r3
E

+
Er1;r2Er3 [3]

E2
� 2Er1Er2Er3

E3
;

where numbers in brackets denote all possible permutations of the free indices. For example Er1;r2Er3 [3] = Er1;r2Er3 +
Er1;r3Er2 + Er2;r3Er1 :Then,

r��� ln(�EiT ) = �Er1;r2;r3;r4
E

+
Er1;r2;r3Er4

E2

+
Er1;r2;r4Er3 + Er1;r2Er3;r4 + Er1;r3;r4Er2

E2

+
Er1;r3Er2;r4 + Er2;r3;r4Er1 + Er2;r3Er1;r4

E2

�2 (Er1;r2Er3 + Er1;r3Er2 + Er2;r3Er1)Er4
E3

�2Er1;r4Er2Er3 + 2Er1Er2;r4Er3 + 2Er1Er2Er3;r4
E3

+
6Er1Er2Er3Er4

E4

= �Er1;r2;r3;r4
E

+
Er1Er2;r3;r4 [4] + Er1;r2Er3;r4 [3]

E2

�2Er1;r2Er3Er4 [6]
E3

+
6Er1Er2Er3Er4

E4
:

Now, consider V ��iT
�
`�iT
�2
(EiT )

�2
: Write it as V `2E�2: Then,

r�

"
V ��iT

�
`�iT
�2

E2iT

#
=

Vr1U
2 + 2V UUr1
E2

� 2V U
2Er1
E3

;

r��

"
V ��iT

�
`�iT
�2

E2iT

#
=

Vr1;r2U
2 + 2Vr1UUr2 [2] + 2V Ur2Ur1 + 2V UUr1;r2

E2

�2Vr1U
2Er2 [2] + 2V UUr1Er2 [2] + V U

2Er1;r2
E3

+6
V U2Er1Er2

E4
:

The third order derivative is then given by

r���

"
V ��iT

�
`�iT
�2

E2iT

#
=

Vr1;r2;r3U
2 + 2Vr1;r2UUr3 [3] + 2Vr1Ur3Ur2 [3]

E2

+2
Vr1UUr2;r3 [3] + V Ur2;r3Ur1 [3] + V UUr1;r2;r3

E2

�2Vr1;r2U
2Er3 [3] + 2Vr1UUr2Er3 [6]

E3

�22V Ur2Ur1Er3 [3] + 2V UUr1;r2Er3 [3]
E3
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�2Vr1U
2Er2;r3 [3] + 2V UUr1Er2;r3 [3] + V U

2Er1;r2;r3
E3

+6
Vr1U

2Er2Er3 [3] + 2V UUr1Er2Er3 [3]

E4

+6
V U2Er1;r2Er3 [3]

E4
� 24V U

2Er1Er2Er3
E5

= Op

�
1

T 3=2

�
Lastly,

r����

"
V ��iT

�
`�iT
�2

E2iT

#
=

Vr1;r2;r3;r4U
2 + 2Vr1;r2;r3UUr4 [4] + 2V UUr1;r2;r3;r4

E2

+2
Vr1;r2Ur4Ur3 [6] + Vr1;r2UUr3;r4 [6] + Vr1Ur3;r4Ur2 [12]

E2

+2
Vr1UUr2;r3;r4 [4] + V Ur2;r3;r4Ur1 [4] + V Ur2;r3Ur1;r4 [3]

E2

�2Vr1;r2;r3U
2Er4 [4] + 2Vr1;r2UUr3Er4 [12] + 2Vr1Ur3Ur2Er4 [12]

E3

�4Vr1UUr2;r3Er4 [12] + V Ur2;r3Ur1Er4 [12] + V UUr1;r2;r3Er4 [4]
E3

�2Vr1;r2U
2Er3;r4 [6] + Vr1U

2Er2;r3;r4 [4] + V U
2Er1;r2;r3;r4

E3

�4Vr1UUr2Er3;r4 [12] + V Ur2Ur1Er3;r4 [6]
E3

�4V UUr1;r2Er3;r4 [6] + V UUr1Er2;r3;r4 [4]
E3

+6
Vr1;r2U

2Er3Er4 [6] + 2Vr1UUr2Er3Er4 [12]

E4

+6
2V Ur2Ur1Er3Er4 [6] + 2V UUr1;r2Er3Er4 [6]

E4

+6
Vr1U

2Er2;r3Er4 [12] + 2V UUr1Er2;r3Er4 [12]

E4

+6
V U2Er1;r2;r3Er4 [4] + V U

2Er1;r2Er3;r4 [3]

E4

�24Vr1U
2Er2Er3Er4 [4] + 2V UUr1Er2Er3Er4 [4]

E5

�24V U
2Er1;r2Er3Er4 [6]

E5

+120
V U2Er1Er2Er3Er4

E6
;

which is Op(T�3=2), as desired.

A.5 Proof of Theorem 6.2

Proof (First Part). The �rst result directly follows from Theorem 1 of Jenish and Prucha (2009). Therefore, the �rst
part of the proof consists of veri�cation of Assumptions 1-5 in Jenish and Prucha (2009). To avoid confusion, these will be
called Assumptions JP1-JP5. As indices are assumed to be located on an integer lattice D � Zd; where d > 0; increasing
domain asymptotics is implied, which veri�es Assumption JP1.

Next, consider
lim
k!1

sup
i;T
E[jZiT j2+� 1(ZiT )>k];
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where 1(�) is the indicator function. De�ne EA[�]; the expectation taken over the set fZiT : jZiT j > kg: Then,

E[jZiT j2+� jZiT j" jZiT j�" 1(jZiT j)>k] = EA[jZiT j
2+� jZiT j" jZiT j�"];

for some " > 0: Observe that for some jZiT j > k; jZiT j�" > k�": Hence,

EA[jZiT j2+� jZiT j" jZiT j�"] < EA[jZiT j2+� jZiT j" k�"]
= k�"EA[jZiT j2+� jZiT j"]
� k�"E[jZiT j2+�+"]:

By Assumption 6.4, supi;T E[jZiT j
~"
] <1 for ~" > 2 + �; so supi;T E[jZiT j

2+�+"
] <1: Therefore,

sup
i;T
EA[jZiT j2+� jZiT j" jZiT j�"] � k�" sup

i;T
E[jZiT j2+�+"];

and
lim
k!1

sup
i;T
EA[jZiT j2+� jZiT j" jZiT j�"] � lim

k!1
k�"O(1) = 0:

Hence, ZiT is L2+�-bounded Uniformly over i and T for some � > 0 :

lim
k!1

sup
i;T
E[jZiT j2+� 1(jZiT j)>k] = 0: (37)

In addition, Assumption 6.5(a) implies that
P1

m=1m
d�1�1;1(m)

�=(2+�) <1; which in turn implies that

1X
m=1

�1;1(m)m
[d(2+�)=�]�1 <1;

as shown by Jenish and Prucha (2009). Therefore, by their Corollary 1, Assumptions JP2 and JP3(a) are also satis�ed.
Assumptions JP3(b)-(c) are exactly the same as Assumptions 6.5(b)-(c) and are directly veri�ed. Finally, Assumption 6.6
corresponds to Assumption JP5, in the setting of this study. Then, by their Theorem 1,

p
LN

L�1N
P

i2Gg ZiTr
V ar

�
L
�1=2
N

P
i2Gg ZiT

� d! N(0; 1):

for all g 2 f1; :::; Gg; implying that V ar
�
L�1N

P
i2Gg ZiT

�
= O

�
L�1N

�
: Therefore,

1

G2N

GX
g=1

1

L2N

XX
i;j2Gg

Cov(ZiT ; ZjT ) =
1

G2N
GNO

�
1

LN

�

= O

�
1

GNLN

�
= O

�
1

N

�
;

which proves the �rst result.
Proof (Second Part). The proof of the second result follows directly from the reasoning in the proof of Lemma 1 in
Bester, Conley and Hansen (2011). The following is simply a statement of their discussion. The object of interest is

1

N2

GX GX
g 6=h

X
i2Gg

X
j2Gh

Cov(ZiT ; ZjT ):

The key is to �nd a bound on the covariances and on the maximum number of pairs of individuals from di¤erent clusters g
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and h:Start by bounding the number of neighbours for any given individual. Based on the distance metric, 1-order neighbours
are those individuals that lie one unit away from the selected individual. Then, 2-order neighbours are given by all points
that are two units away. This generalises to m-order neighbours. The largest number of such neighbours for any individual is
given by C(d)md�1 and naturally it depends on the order of the neighbourhood and the dimension. But what is the number of
individuals one has to consider? Imagine each group as a collection of contour sets; that is, concentric sets starting from the
boundary and moving towards the inside of the group one unit at a time. For example, the �rst contour set is the boundary, the
second is the set of points one unit away from the boundary, the third is the set of points two points away from the boundary.
For the group g; denote @1Gg the �rst contour set, @2Gg the second contour set etc. Now consider m-order neighbours from
two di¤erent groups and remember that the groups are contiguous by Assumption 6.3. Then, these neighbours can possibly
reside in m di¤erent pairs of contour sets. For instance, for two groups g and h; 3-order neighbours can be residing in the
following pairs of contour sets: (@1Gg; @1Gh); (@1Gg; @2Gh); (@1Gg; @3Gh); (@2Gg; @1Gh); (@2Gg; @2Gh); (@3Gg; @1Gh); notice that
it is still possible to �nd, 3-order neighbours in two contour sets that are, say, only one unit apart from each other. Hence,
the following can be determined for a given individual : the bound on the maximum number of m-order neighbours and the
fact that these neighbours may reside on a maximum of m pairs of contours. But how many such individuals can there be in
a given contour set? Observe that the largest contour set will be the boundary and there already is a bound on the number
of individuals on the boundary by Assumption 6.2. Therefore, the maximum number of m-order neighbours for two given
groups g and h is given by

�dm
dL

(d�1)=d
N where �d = 2C(d)C:

This implies that X
i2Gg

X
j2Gh

Cov(ZiT ; ZjT ) �
1X
m=1

�dm
dL

(d�1)=d
N Cov(ZiT ; ZjT ):

By Lemma 1 of Bolthausen (1982), which is based on Ibragimov and Linnik (1971),

Cov(ZiT ; ZjT ) � c��1;1(m)
�=(2+�) jjZiT jj2+� jjZjT jj2+� ;

where c� is a constant depending on � and jj�jj2+� = fE[j�j2+�]g1=(2+�) is the L2+�-norm. Then, by Assumption 6.4,
jjZiT jj2+� <1 for all i and T and Cov(ZiT ; ZjT ) � c��1;1(m)

�=(2+�) leading to

X
i2Gg

X
j2Gh

Cov(ZiT ; ZjT ) �
1X
m=1

�dm
dL

(d�1)=d
N c��1;1(m)

�=(2+�)

= c��dL
(d�1)=d
N

1X
m=1

md�1;1(m)
�=(2+�)

= O
�
L
(d�1)=d
N

�
;

where the last equality follows from Assumption 6.5(a). Then,

1

N2

GNX GNX
g 6=h

X
i2Gg

X
j2Gh

Cov(ZiT ; ZjT ) � 1

N2

GNX GNX
g 6=h

O
�
L
(d�1)=d
N

�
=

1

N2
O
�
G2NL

(d�1)=d
N

�
=

1

N2
O
�
N2L

�(d+1)=d
N

�
= O

�
L
�(d+1)=d
N

�
;

which proves the second result.

B Details of the Simulation Analysis

In order to numerically evaluate the integrated likelihood, �i(�ij�) is evaluated at 15 equally distant points on a grid between
(0:05)2=252 and (0:87)2=252; which are the daily variances corresponding to annual volatilities of 5% and 87%. These
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boundaries were chosen randomly and di¤erent choices can be used as long as the interval contains the true parameter
values, which, by design, take on a value between (0:15)2=252 and (0:80)2=252: Similarly, the integral can be calculated using
a larger number of draws within the interval. The reason for choosing 15 values for this purpose is to keep the computation
time at a reasonable length.

Iterated updating is done as follows: �rst some consistent estimates of � and � have to be obtained. The composite

likelihood method is used here for this purpose. De�ne these initial estimates as �̂
(1)
= (�̂; �̂): Then, �̂

(1)
is used to calculate

the value of the prior values at each �i; �i(�ij�̂
(1)
):De�ne each value of �i that is used to evaluate the integral as �

(j)
i ;

j = 1; :::; 15: This gives

�i(�
(j)
i j�̂

(1)
) for j = 1; :::; 15:

In the next step, these priors are used to calculate the integrated likelihood,

`IiT (�) =
1

T
ln

Z
exp [T`iT (�; �i)]�i(�ij�̂

(1)
)d�i;

Note that �̂
(1)
does not vary in this step. The integrated composite likelihood estimator of �0 is then given by

�̂IL = argmax
�

1

NT

NX
i=1

ln

Z
exp [T`iT (�; �i)]�i(�ij�̂

(1)
)d�i:

De�ne now �̂
(2)
= �̂IL: In the next step, �̂

(2)
is used to calculate the priors and a new estimate of �0; �̂

(3)
; is obtained by

maximising the new integrated likelihood, (NT )�1
PN

i=1 ln
R
exp [T`iT (�; �i)]�i(�ij�̂

(2)
)d�i: This procedure continues until

�(n) � �(n�1): The minimum necessary number of iterations to attain convergence will depend on the model and estimation
method at hand. In this study, optimisation continues until either n = 10 or �(n)��(n�1) < (0:003; 0:01)0:Again, the choice of
(0:003; 0:01)0 as a cut-o¤ point here is for illustration purposes and is not determined by a speci�c criterion. This, along with
the speci�c numerical integration method, the density of the grid for �i and the number of iterations have to be determined
depending on the model and data at hand.
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QML vs CL CL vs IPCL QML vs IPCL
Stock t-stat Result t-stat Result t-stat Result

Alcoa 0.993 - 2.668 IPCL 2.217 IPCL
American Express 1.451 - 3.168 IPCL 3.444 IPCL
Bank of America 1.109 - 3.862 IPCL 3.271 IPCL
Du Pont 2.288 CL 2.587 IPCL 3.030 IPCL
General Electric 0.960 - 2.142 IPCL 2.529 IPCL
IBM 1.815 - 2.067 IPCL 2.493 IPCL
Coca Cola 2.870 CL -0.932 - 1.541 -
Microsoft 2.755 CL -0.427 - 1.879 -
Exxon Mobil 1.404 - 1.920 - 2.404 IPCL

Table 5: Giacomini-White test results for GARCH panels. The level of signi�cance is
5%. Results for the following comparisons are reported: quasi maximum likelihood vs
composite likelihood (columns 2 � 3), composite likelihood vs integrated composite like-
lihood (columns 4� 5) and quasi maximum likelihood vs integrated composite likelihood
(columns 6� 7). Loss functions are based on realised covariance, RVit. The result of each
test is given in the �Result�column while t-statistics are reported in the �t-stat�column.
A dash signi�es that the test is inconclusive. �i is estimated using the method of mo-
ments estimator for the CL and QMLE methods while the intercept parameter for ICL is
estimated using the concentrated likelihood method, as de�ned in (15).

T = 150 T = 175 T = 207

Strategy # �̂ �̂ # �̂ �̂ # �̂ �̂

Security selection 52 :202 :788 34 :174 :820 26 :179 :815
Macro 25 :114 :884 17 :093 :907 15 :105 :893

Directional Traders 51 :208 :771 24 :153 :840 16 :161 :832
Fund of funds 78 :153 :847 41 :143 :857 25 :152 :836
Multi-process 28 :176 :824 19 :165 :835 15 :230 :770
Emerging 19 :220 :772 11 :176 :794 7 :176 :801

Fixed income 13 :249 :751 8 :195 :805 5 :229 :768
CTA 41 :090 :910 22 :061 :939 15 :072 :928

Table 6: Integrated composite likelihood parameter estimates for hedge fund data. Esti-
mation is based on the following three samples periods: (i) November 1998 - April 2011
(150 time-series observations) given in columns 2� 4, (ii) October 1996 - April 2011 (175
time-series observations) given in columns 5� 8 and (iii) February 1994 - April 2011 (207
time-series observations) given in columns 8�10. Number of funds included in the analysis
given in the �#�column.
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Figure 1: Sample distributions of �̂ using the Composite Likelihood (CL), Infeasible CL
(InCL), Integrated CL (ICL), and Integrated Pseudo CL (IPCL). The vertical line is drawn
at the true parameter value. Based on 500 replications under cross-sectional dependence
where (�; �) = (0:05; 0:93).
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Figure 2: Sample distributions of �̂ using the Composite Likelihood (CL), Infeasible CL
(InCL), Integrated CL (ICL), and Integrated Pseudo CL (IPCL). The vertical line is drawn
at the true parameter value. Based on 500 replications under cross-sectional dependence
where (�; �) = (0:05; 0:93).
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Figure 3: Sample distributions of �̂ + �̂ using the Composite Likelihood (CL), Infeasible
CL (InCL), Integrated CL (ICL), and Integrated Pseudo CL (IPCL). The vertical line
is drawn at the true parameter value. Based on 500 replications under cross-sectional
dependence where (�; �) = (0:05; 0:93).
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Figure 4: Average likelihood plots for � and �: Based on likelihood averages over 500
replications (with cross-sectional dependence). In the upper panel, � is �xed at 0:93 while
the lower panel is based on � = 0:05: CL is evaluated at the sample estimates of �i; while
Infeasible CL is evaluated at the true values of �i: Integrated CL is calculated using prior
(P1) where priors for each replication are evaluated at the parameter estimates from the
penultimate iteration for that particular replication. Vertical lines are drawn at the true
parameter values of � = 0:05 and � = 0:93:
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Figure 5: Conditional volatility plots. Based on parameters estimates by the integrated
likelihood method using panels of funds that have reported non-zero returns between
November 1998 and April 2011 (150 observations). Number of funds in each strategy-
panel is given in parentheses. Random examples of high-volatility funds are given by thick
solid lines, while the thick broken lines belong to random examples of low volatility funds.
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Figure 6: Plots of the 0%; 10%; 50% (median), 90% and 100% quantiles of the sample
distribution of volatility across funds. Based on �tted conditional volatilities displayed in
Figure 5. Number of funds in each strategy is given in parentheses.
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Figure 7: Plots of 0%; 10%, 90% and 100% quantiles (normalised by the median) of the
sample distribution of volatility across funds. Based on �tted conditional volatilities dis-
played in Figure 5. Number of funds in each strategy is given in parentheses.
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