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Abstract

The focus of this article is on nonlinear time varying coefficient models when the covariates and coefficient
components are weakly, nearly, or possibly purely integrated time series processes. Local linear fitting is
used to derive coefficient estimators along with their asymptotic distributions. The rates of convergence for
the estimators is shown to differ based on whether stationary, weakly, nearly, or purely integrated covariates
are being modelled. Similar conclusions also hold for the derived optimal bandwidth parameters.
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1. Introduction

Functional time varying coefficient models are becoming increasingly prominent amongst both theoretical
and empirical econometricians. Particularly appealing features of these models are their capacity to attenu-
ate the curse of dimensionality and their flexibility in accommodating nonlinear phenomena in economic and
financial time series data. Indeed, much has been written on these models with stationary and deterministic
trend components; see for example Robinson (1989), Chen and Tsay (1993), Park and Hahn (1999), Cai
et al. (2000), and Cai (2007) among others. In contrast, theoretical consideration of time varying coefficient
models with nonstationary covariates and varyinf coefficient components is still an open area of research. In
this regard, the recent progression of contributions includes Xiao (2009) who studies the model with possi-
bly integrated regressors and stationary varying coefficient components and Cai et al. (2009) who consider
the case when the varying coefficient components are stationary and the regressors are possibly integrated.
More recently still, the contributions of Gao and Phillips (2013) and Sun et al. (2013) extend these varying
coefficient models to also accommodate possibly integrated series in both regressors and varying coefficient
components. On the other hand, apart from a working paper by Cai and Wang (2008), very little has
been done in the way of varying coefficient models with nearly integrated variables. Accordingly, in order
to bridge this gap in the literature, the focus of this paper is on the popular varying coefficient regression
model

Yt = β(Zt)
>Xt + εt, 1 ≤ t ≤ n (1)

where Yt, and εt are scalars, Zt is possibly nearly or purely I(1), and Xt = (Xt1, . . . , Xtd)
> is a d-dimensional

vector of nearly, weakly in the sense of Park (2003), and purely I(1) covariates. Conformingly, β(·) is a
d × 1 column vector function, and the superscript > denotes a matrix transpose. Although extending the
model above to accommodate multivariate Zt is conceptually straightforward, it is nonetheless notationally
cumbersome and so henceforth Zt is assumed to be univariate. Moreover, local linear estimation is used
to derive coefficient estimates and their asymptotic properties are derived using technical results in Phillips
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(2009), Wang and Phillips (2009) and Gao and Phillips (2013).

The rest of the paper is organized as follows: the next section considers the time varying coefficient model
in equation (1) when Zt is stationary and Xt consists of stationary, nearly (possibly weakly) integrated, and
purely integrated covariates. Section 3 analyzes the underlying model when Zt is nearly (possibly purely)
I(1) and Xt is a nearly integrated process. Section 4 concludes. All proofs are contained in the appendices.

2. Models with Stationary Zt

The first model which is analyzed considers the case when a subset of Xt is weakly (or nearly, possibly even
purely) integrated in the sense of Park (2003), and Zt is strictly stationary. In particular, this model assumes
that Xt = [X>t1, X

>
t2, X

>
t3]> where Xti is a di-dimensional column vector, d1 + d2 + d3 = d, Xt1 is stationary

with first component identically one, Xt2 is weakly (or nearly) I(1), and Xt3 is a pure I(1) process. The
model will also assume that when Xt2 enters as a weakly integrated covariate it will enter as a univariate
process with d3 = 0. Moreover, if Xt2 is a nearly integrated process and d3 = 0, it will be assumed that Xt2

enters as a multivariate process with d2 ≥ 1. On the other hand, when Xt2 is nearly integrated process and
d2, d3 6= 0, the model will assume that d2 = d3 = 1. Otherwise, if d2 = 0 and d3 6= 0 then Xt3 enters as a
multivariate I(1) process with d3 ≥ 1. In either scenario, the coefficient function is conformingly expressed
as β(Zt) = [β1(Zt)

>, β2(Zt)
>, β3(Zt)

>]> and the model in equation (1) is re-expressed as:

Yt = β(Zt)
>Xt + εt

= β1(Zt)
>Xt1 + β2(Zt)

>Xt2 + β3(Zt)
>Xt3 + εt, 1 ≤ t ≤ n (2)

The model further assumes εt’s to be innovations with respect to both Xt and Zt. This assumption which
is formalized as E(εt|Xt, Zt) says that Xt and Zt are uncorrelated with εt. Note further that Yt is allowed
to be stationary or nonstationary.

2.1. Local Linear Estimation

A powerful technique for handling nonlinear statistical models is local linear fitting. As demonstrated in Fan
and Gijbels (2003), Fan (2003), and Li and Racine (2007), local linear fitting is particularly appealing for
its high statistical efficiency in an asymptotic minimax sense, design-adaptation, bias reduction, and auto-
matic boundary effect correction. Accordingly, β(·) is estimated using local linear fitting from observations
{(Xt, Zt, Yt)}nt=1. In particular, under the assumption that β(·) is twice continuously differentiable, β(Zt) is
locally approximated as β(z) + β(1)(z)(Zt − z) for any grid point z, where β(s) = dsβ(z)/dzs. Furthermore,
the vector of parameter estimates is defined as

(
θ0
θ1

)
= arg min

θ0,θ1

n∑
t=1

[
Yt − θ>0 Xt − (Zt − z) θ>1 Xt

]2
Kh(Zt − z) (3)

where Kh(u) = h−1K(u/h) and K(·) is a kernel function satisfying Assumptions 5 (f) and (g), θ̂0 = β̂(z) is

an estimate of β(z) and θ̂1 = β̂(1)(z) estimates β(1)(z). The latter two estimators can now be expressed as

(
β̂(z)

β̂(1)(z)

)
=

[
n∑
t=1

(
Xt

(Zt − z)Xt

)⊗2
Kh(Zt − z)

]−1

×
n∑
t=1

(
Xt

(Zt − z)Xt

)
YtKh(Zt − z) (4)

where A⊗2 = AA>(A⊗1 = A) for any vector or matrix A.
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2.2. Notations and Assumptions

Consider first the weakly integrated process defined as Xt2 = αXt−1,2 + ηt where α = 1−m/n, the sample
size is n, and m is a function of n satisfying m/n −→ 0 as n −→∞. Moreover, ηt is assumed to be a mean
zero I(0) linear process ηt = π(L)ut =

∑∞
k=0 πkut−k with longrun variance σ2

η = π(1)2Eu2t and satisfying

Assumptions 1.

(a)
∑∞
k=0 k|πk| <∞ and E|ut|p <∞ for some p > 2.

(b) The distribution of {ut} is absolutely continuous with respect to the Lebesgue measure, and has char-
acteristic function φu for which limt−→∞ tδφu(t) = 0.

Note that this framework interpretsXt2 as a general linear process with a weak unit root with the autoregressive-
weakly-integrated-moving-average (ARWIMA) process as a special case. Moreover, this construction implies
that although α tends to unity for all functions of m, the rate of convergence will depend on the exact func-
tional form of m. In particular, the process assumes that m −→∞ as n −→∞ and therefore whenever m is
not a constant it is clear that α tends to unity at a rate slower than n−1. This is in contrast to the classical
near unit root case of Phillips (1987) where m = c for some constant c > 0 and α converges to unity at rate
n−1. When this is indeed the case, the model under consideration will assume the (possibly multivariate)
form Xt2 = (1− c/n)Xt−1,2 + ηt where ηt is a mean zero stationary strong mixing process with variance Ση
and satisfying one of the following two conditions:

Assumptions 2.

(a) For some δ◦ > 0, E|ηt|2+δ◦ <∞ and
∑∞
k=0 α(k)k(2+δ◦)/δ◦ <∞.

(b) For some γ∗ > 2+δ∗ with 0 < δ∗ ≤ 2 and λ∗ = λ∗(δ∗) > 0, E|ηt|γ∗ <∞ and
∑∞
k=0 α(k)1/(2+δ∗)−1/γ∗ <

∞

Similarly, when α = 1 and the pure I(1) process is modelled as the unit root process Xt3 = Xt−1,3 + ωt,
assume {ωt} has variance Σω and satisfies one of the following:

Assumptions 3.

(a) For some δ• > 0, E|ωt|2+δ• <∞ and
∑∞
k=0 α(k)k(2+δ•)/δ• <∞.

(b) For some γ? > 2+δ? with 0 < δ? ≤ 2 and λ? = λ?(δ?) > 0, E|ωt|γ? <∞ and
∑∞
k=0 α(k)1/(2+δ?)−1/γ? <

∞

Finally, observe the following processes associated with Xt2 and Xt3.
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Vmn(r) = n−1/2Xbnrc,2

or (5a)

Vcn(r) = n−1/2Xbnrc,2

V0n(r) = n−1/2Xbnrc,3 (5b)

Vη,m(r) =

∫ r

0

exp(−m(r − s))dVη,0(s)

or (5c)

Vη,c(r) =

∫ r

0

exp(−C(r − s))dVη,0(s)

Vη(r) =
√
mVη,m

( r
m

)
(5d)

where r ∈ [0, 1], bzc denotes the largest integer which does not exceed z, C is a d2-dimensional diagonal ma-
trix diag {c, . . . , c}, Vη,0 is a d2-dimensional (d2 = 1 in the case of Vη,m) multivariate (univariate) Brownian
motion process with covariance matrix Ση which reduces to σ2

η in case of the weakly integrated construc-
tion, and Vη,m and Vη,c are respectively the univariate and d2-dimensional multivariate Ornstein-Uhlenbeck
processes which collapse to Brownian motions on [0, 1]d2 and [0, 1] respectively when m = c = 0. Finally,
the normalized process Vη(r) is an Ornstein-Uhlenbeck process with unit parameter and stable marginal
distribution which approaches N(0, σ2

η/2) as r −→∞, and the density of which will be denoted as D. Note
further that for any fixed m > 0, as n −→∞,

Vmn −→d Vη,m (6a)

Vcn −→d Vη,c (6b)

V0n −→d Vω,0 (6c)

where −→d denotes convergence in distribution and Vω,0 is a Brownian motion on [0, 1]d3 with covariance
matrix Σω. Both results can in fact be strengthened further under Assumptions 1 to 3, and appropriate
probabilistic embeddings of Vmn (Vcn) and Vη,m (Vη,c) and V0n and Vω,0 respectively, on common respective
probability spaces so that

sup
0≤r≤∞

∣∣Vmn(r)− Vη,m(r)
∣∣ = op

(
n−1/2+1/p

)
+Op

(
mn−1

)
(7a)

sup
0≤r≤∞

∣∣∣∣Vcn(r)− Vη,c(r)
∣∣∣∣ = Oa.s.

(
n−1/2+1/(2+δ∗) logλ∗(n)

)
(7b)

sup
0≤r≤∞

∣∣∣∣V0n(r)− Vω,0(r)
∣∣∣∣ = Oa.s.

(
n−1/2+1/(2+δ?) logλ?(n)

)
(7c)

for large n, uniformly in m such that m/n −→ 0 as n −→ ∞, where | · | is the uniform norm, and ‖ · ‖ is
the L2 norm in Rd2 and Rd3 in equations (7b) and (7c), respectively. The particular appeal of these result
is that Vη,m (Vη,c) approximates Vmn (Vcn) and Vω,0 approximates V0n with negligible error for all large
n. In other words, all asymptotics for Xt2 can be derived from the asymptotics of functionals of Vη,m or
Vη,c, and similarly for Xt3. Moreover, the asymptotic results which follow will frequently exploit the local
times Lη(r, x) of the normalized process Vη(s) in equation (5d) and the local times Lω(r, x) of the Brownian
motion process Vω,0(s). Roughly speaking, the local time measures the length of time, up to time r, a
diffusion process spends in an immediate neighbourhood of x. Formally, it is defined as
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Lη(r, x) = lim
δ−→0

1

2δ

∫ r

0

1
{∣∣Vη(s)− x

∣∣} ds
Lω(r, x) = lim

δ−→0

1

2δ

∫ r

0

1
{∣∣Vω,0(s)− x

∣∣} ds
Moreover, the m-asymptotics which characterize the weakly integrated process of interest here will be
handled using the function

Dm(x) =
1

m
Lη(m,x)

which, as shown in Park (2003), satisfies

Dm(x) = D(x) + o(m−1/2 logm log logm) a.s.

uniformly over any compact interval, and for any k > −1,

∫ ∞
−∞
|x|kDm(x)dx −→a.s.

∫ ∞
−∞
|x|kD(x)dx

Consider next the class of asymptotically homogeneous functions studied in detail in Park and Phillips (1999,
2001); Park (2003).

Definition 1. Let F : R {0} −→ R. F is said to be regular if, for any δ > 0 sufficiently small, it satisfies
that

1. for all |x| ≥ δ and |x − y| ≤ δ/2,
∣∣F (x) − F (y)

∣∣ ≤ Kab|x − y| with Kab(x) = K(1 + |x|a)(1 + |x|b),
where a > 0, b < 0 and K are some constants not depending upon δ, and

2. for all |x| < δ,
∣∣F (x)

∣∣ ≤ K|x|c with some constants c > −1 and K independent of δ.

F is said to be regular in the second order if both F and F 2 are regular.

Definition 2. A function H : R −→ R is said to belong to the class of asymptotically homogeneously
functions if and only if

H(λx) = κ(λ)F (x) +R(x, λ)

provided

1. F (·) is regular in the second order, and

2.
∣∣R(x, λ)

∣∣ ≤ ν(λ)Q(x) for all λ sufficiently large and for all x over any compact set where ν(λ)/κ(λ) −→
0 as λ −→∞ and Q(·) is regular in the second order.

Introduce next the series {vt} and consider the following set of assumptions.
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Assumptions 4. Let {vt} be a martingale difference sequence with respect to some filtration Ft such that

(a) Xt2 is adapted to Ft−1, and

(b) E
(
v2t |Ft−1

)
= σ2 a.s. for all t, and supt E

(∣∣vt∣∣2+δ∣∣∣Ft−1) <∞ a.s. for some δ > 0.

Under Assumptions 1 and 4, Theorem 3.8 in Park (2003) provides a useful convergence result for weakly
integrated process when m = o

(
n1−2/p ∧ n2/3

)
and H belongs to the class of asymptotically homogeneous

functions with asymptotic order κ and limit homogeneous function F . In particular, the result implies that
when m −→∞ as n −→∞, then,

1

n
κ

(√
n

m

)−1 n∑
t=1

H(Xt2) −→p

∫ ∞
−∞

F (x)D(x)dx (8a)

1

n
κ

(√
n

m

)−1 n∑
t=1

H(Xt2)vt −→d N

(
0, σ2

u

∫ ∞
−∞

F 2(x)D(x)dx

)
(8b)

An important implication of this result concerns the subclass of polynomial functions in the class of asymp-
totically homogeneous transformations. The two results of particular interest here arise when F (x) = xl for

l = 1, 2, in which case the homogeneity function κ
(√

n
m

)−1
=
(
mn−1

)l/2
and, as m,n −→∞,

1

n

n∑
t=1

(√
mn−1Xt2

)⊗l
−→p

∫ ∞
−∞

xlD(x)dx ≡ V (l)
D (x) (9)

On the other hand, observe that if B(·) is any Borel measurable and totally Lebesgue integrable function
(see Berkes and Horváth (2006)), and in particular, if B(·) = (·)⊗l for l = 1, 2, then as n −→∞,

1

n

n∑
t=1

(
1√
n
Xbnrc2

)⊗l
−→d

∫ 1

0

Vη,m(s)⊗lds ≡ V (l)
η,c (10a)

1

n

n∑
t=1

(
1√
n
Xbnrc3

)⊗l
−→d

∫ 1

0

Vω,0(s)⊗lds ≡ V (l)
ω,0 (10b)

Since the asymptotics to follow will also involve covariance asymptotics between two nearly integrated series
or a nearly integrated and purely integrated series, consider also Theorem 1 of Phillips (2009). This result
establishes that joint triangular sequences (xt,n, yt,n) which jointly converge weakly to continuous Gaussian
processes (Gx(r), Gy(r)), satisfy the following relation for any cn −→∞ s.t. cnn −→ 0 and r ∈ [0, 1]:

cnn
−1
bnrc∑
t=t=1

yt,ng (cnxt,n) −→d

∫ ∞
−∞

g(s)ds

∫ r

0

Gy(p)dLGx(p, 0) (11)

where g(·) is a Lebesgue integrable function on R with nonzero energy and LGx(p, s) is the local time of the
process Gx(t). In particular, observe that when cn is a constant, say cn = 1, the result implies that when
(Vcn, V0n) jointly converge weakly to (Vη,c, Vω,0), then

n−1
bnrc∑
t=1

VcnV0n −→d

∫ 1

0

Vη,c(r)Vω,0dr ≡ Vη,c,ω,0 (12)

The following set of assumptions are now imposed.
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Assumptions 5.

(a) β(z) is twice continuously differentiable in z for all z ∈ R.

(b) Ak(z) is positive-definite and continuous in a neighbourhood of z. f(z) is continuously differentiable
in a neighbourhood of z and fz(z) > 0.

(c) εt has a finite fourth moment E
(
εt
∣∣Xt, Zt

)
= 0 and E

(
ε2t
∣∣Xt, Zt

)
= σ2

ε is a positive constant.

(d) {(Xt1, Zt, εt, ηt) ; t ≥ 1} is a strictly α-mixing stationary process with the δ1-th moment (δ1 > 2).
E
(
|εtX2

t1|δ2
∣∣Zt = z

)
≤ C1 <∞ with δ2 > δ1 and α(t) = O

(
t−δ3

)
for some δ3 > min {δ2δ1/(δ2 − δ1), δ5, 2δ6/(2− δ6)},

where δ5 = δ4δ1/(δ4δ1 − δ1 − δ4) for some δ4 satisfying δ1/(δ1 − 1) < δ4 < 2. Also, ‖ηt‖q0 =

(E|ηt|q0)
1/q0 <∞ with q0 = δ4δ6/(δ4−δ6) for some 1 < δ6 < δ4. Further, supk E

(
η21ε

2
k+1

∣∣Zk+1 = z
)
≤

C2 <∞.

(e) f(z0, zs|x0, xs; s) ≤ M ≤ ∞ for s ≥ 1, where f(z0, zs|x0, xs; s) is the conditional density of (Z0, Zs)
given (X01 = x0, Xs1 = xs).

(f) The kernel function K(·) is a symmetric and continuous density function with support [−1, 1].

(g) The bandwidth h satisfies h −→ 0 and nh −→∞.

(h) n1/2−δ1/4hδ1/δ2−1/2−δ1/4 = O(1)

The assumptions above are similar to those imposed in Cai and Wang (2008) and Cai et al. (2009). In
particular, Assumptions 5 (a) and (b) are smoothness conditions while (c) assumes that regression errors
are conditionally homoskedastic. Assumptions 5 (d) is satisfied under standard moment conditions if α-
mixing is assumed to have geometrically decaying coefficients and is the weakest condition one can impose
for weakly dependent stochastic processes. Assumptions 5 (e) is a technical assumption required for the
proofs. Moreover, Assumptions 5 (f) is commonly imposed in the literature and implies that the kernel
function K(·) is compactly supported (which can be relaxed at the expense of lengthier proofs) while (i)
and (j) are assumptions on the bandwidth parameter and allow for a wide range of choices. Assumption (i)
in particular is slightly stronger than the assumption nh −→ ∞ but it immediately satisfies the selection
criterion h = cn−λ for 0 < λ < 1 and c > 0 required for optimal bandwidths. See Cai et al. (2009) for details.

Consider next the regularity conditions required to establish the limiting distribution of β̂(z). In this regard,
denote by fz(z) the marginal density of Zt and define the kth conditional moment of Xt1 with respect to
Zt = z as Ak(z) = E

(
X⊗kt1 |Zt = z

)
, for k = 1, 2. Finally, for j ≥ 0 define µj(K) =

∫∞
−∞ vjK(v)dv and

νj(K) =
∫∞
−∞ vjK2(v)dv, and let

SW (z) =

(
A2(z) A1(z)V

(1)>
D

V
(1)
D A1(z)> V

(2)
D

)
(13a)

SN (z) =

 A2(z) A1(z)V
(1)>
η,c A1(z)V

(1)
ω,0

V
(1)
η,c A1(z)> V

(2)
η,c Vη,c,ω,0

V
(1)
ω,0A1(z)> Vη,c,ω,0 V

(2)
ω,0

 (13b)

2.3. Asymptotic Properties

To develop the asymptotic properties of β̂(z), first letDm,n = diag
{
Id1 ,m

−1/2n1/2Id2
}

andDn = diag
{
Id1 , n

1/2Id2+d3
}

where Idi is a di × di identity matrix, and define Bβ(z) = µ2(K)β(2)(z)/2. Observe now the first major
result.
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Theorem 1. Under Assumptions 1 to 5, when

(a) Xt2 is a weakly integrated process with m = o
(
n1−

1
p ∧ n 2

3

)
, d2 = 1 and d3 = 0, then

√
hnDm,n

(
β̂(z)− β(z)− h2Bβ(z)

)
−→d N (Σβ,W (z))

where N (Σβ,W (z)) is a multivariate normal distribution with mean zero and conditional covariance
matrix given by Σβ,W (z) = v0(K)SW (z)−1/fz(z)

(b) Xt2 is a nearly integrated process with d2 ≥ 1 and d3 = 0, then

√
hnDn

(
β̂(z)− β(z)− h2Bβ(z)

)
−→d MN (Σβ,N (z))

a mean zero mixed normal distribution with conditional covariance matrix Σβ,N (z) = v0(K)
(
Q>SN (z)Q

)−1
/fz(z),

where Q> = [Id1+d2 ,0] is a (d1+d2)×d matrix. When d2 = d3 = 1 then Σβ,N (z) = v0(K)SN (z)−1/fz(z)

Note that Theorem 1 nests several important results. When d2 = d3 = 0 the results of Cai et al. (2000)
are recovered with Σβ,W (z) = Σβ1,0,W (z) = σ2

ε ν0(K)M2(z)−1f−1z (z). On the other hand, when d2 = 0 and
d3 ≥ 1 the results of Cai et al. (2009) emerge with Σβ,N (z) = Σβ1,0,β3,N (z) = σ2

ε ν0(K)S(z)−1f−1z (z) where

S(z) =

(
A2(z) A1(z)V

(1)>
ω,0

V
(1)
ω,0A1(z)> V

(2)
ω,0

)

Theorem 1 also lends insight into convergence rates for V
(
β̂1

)
, V

(
β̂2

)
, and V

(
β̂3

)
. In particular, the

use of local linear fitting to estimate β implies that V
(
β̂1

)
is of order O

(
(nh)

−1
)

, V
(
β̂2

)
is of order

O
(
m
(
n2h

)−1)
when Xt2 is weakly I(1) and O

((
n2h

)−1)
when Xt2 is nearly I(1). The order of V

(
β̂3

)
is O

((
n2h

)−1)
when Xt3 is a pure I(1) process. Since m = o

(
n1−

1
p ∧ n 2

3

)
, it is clear that the rate of

convergence of the variance of β̂2 is slower in the case of weakly integrated process than nearly integrated
and purely integrated ones. Moreover, it is also clear that when Xt2 is a nearly integrated process the rates
of convergence of the variances of β̂2 and β̂3 are the same.

Another popular approach to comparing the estimators is to consider their integrated asymptotic mean
squared error (IAMSE). In this regard, note that for i = 1, 2 and j = 1, 2, 3, the IAMSEs for the model with
weakly and nearly integrated covariates respectively, assume the forms

IAMSEW (β̂i(z)) =
1

4
h4µ2

2(K)

∫
‖β(2)

i (z)‖w(z)dz

+ (m−i+1nih)−1
∫

tr (Σβi,W (z))w(z)dz

IAMSEN (β̂j(z)) =



1
4h

4µ2
2(K)

∫
‖β(2)

j (z)‖w(z)dz

+(njh)−1
∫

tr
(
Σβj ,N (z)

)
w(z)dz for j = 1, 2

1
4h

4µ2
2(K)

∫
‖β(2)

3 (z)‖w(z)dz

+(n2h)−1
∫

tr (Σβ3,N (z))w(z)dz for j = 3
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for some weight function w(·) ≥ 0, where Σβi,W (z) and Σβj ,N (z) are submatrices of dimension di and dj
along the diagonals of Σβ,W (z) and Σβ,N (z) respectively, the first elements of which are indexed by (di, di)
and (dj , dj). The optimal bandwidth can now be derived by minimizing the IAMSE with respect to h and
obtaining the minimizer h?. It is easily verified that the optimal bandwidth in case of the weak unit root
and near unit models are respectively given by

h?W,i =
(
m−i+1ni

)−1/5(∫
tr (Σβi,W (z))w(z)dz

)1/5

×
(∫

µ2
2(K)‖β(2)

i (z)‖w(z)dz

)−1/5

h?N,j =



n−j/5
(∫

tr
(
Σβj ,N (z)

)
w(z)dz

)1/5
×
(∫

µ2
2(K)‖β(2)

j (z)‖w(z)dz
)−1/5

for j = 1, 2

n−2/5
(∫

tr (Σβ3,N (z))w(z)dz
)1/5

×
(∫

µ2
2(K)‖β(2)

3 (z)‖w(z)dz
)−1/5

for j = 3

The above implies that the minimal IAMSE has orderO
((
m−i+1ni

)− 4
5

)
which becomesO

(
n−

4
5 (1− 1−i

p ) ∧ n− 4
5

2+i
3

)
for some p > 2 in case of the weak unit root model since the configuration assumes m = o

(
n1−

1
p ∧ n 2

3

)
.

In contrast, the orders of the IAMSE for the near I(1) model are O
(
n−4j/5

)
for j = 1, 2 and O

(
n−8/5

)
for

j = 3. In either model it is clear that a single optimal choice of h is not possible for all elements of β(z). The
reader is referred to Section 2.4 of Cai et al. (2009) for a two-step estimation procedure which guarantees
optimal convergence rates for all elements of β(z). Note in particular that in the nearly integrated model
since β2(z) and β3(z) can be optimized with a single optimal bandwidth h?N,2,3 = O

(
n−8/5

)
, the two-step

procedure can be applied here as well with minimal adaptation.

3. Models with Integrated and Nearly Integrated Zt

Establishing results when Zt is an integrated or nearly integrated process can be quite complex. Technical
details for general models are still under development and the working paper of Gao and Phillips (2013)
in particular is developing limiting results for models with nonstationarity in both the regressors and the
varying coefficient components. Accordingly, the approach here considers the model in equation (1) when Zt
is a univariate near I(1) or univariate pure I(1) process and Xt is a d-dimensional nearly integrated vector
of covariates.

As in Section 2, the model in this section assumes β(z) is twice continuously differentiable with its local
linear estimator again given by equation (4). Moreover, since Zt is a nearly (possibly purely) I(1) process,
it can be expressed as

Zt = (1− cz/n)Zt−1 + ξt (14)

where cz is any non-negative constant and n is the sample size. Recall that when cz = 0, Zt models a pure
I(1) process and when cz > 0, it generates a near I(1) process. In either scenario, ξt is assumed to be a
mean zero I(0) linear process satisfying

Assumptions 6.

(a) For some δ > 0, E|ξt|2+δ <∞ and
∑∞
k=0 α(k)k(2+δ)/δ <∞.

9



(b) For some γ > 2 + δ with 0 < δ ≤ 2 and λ = λ(δ) > 0, E|ξt|γ <∞ and
∑∞
k=0 α(k)1/(2+δ)−1/γ <∞

Similarly, as in Section 2.2, for cx > 0, Xt is a near I(1) process

Xt = (1− cx/n)Xt−1 + ηt (15)

satisfying Assumptions 2. Furthermore, let Wt =
(
X>t , Zt

)>
and consider a real matrix of coefficients

Cj = (cj, kl : 1 ≤ k, l ≤ d+ 1) which satisfy Wt =
∑∞
j=0 Cjεt−j . Finally, impose the following set of as-

sumptions.

Assumptions 7.

(a) {εi} is a sequence of IID continuous random vectors with E (ε1) = 0, a positive definite matrix Σε and
finite fourth order cumulants.

(b)
∫∞
−∞ |u||ϕε(u)|du <∞ where ϕε(u) is the characteristic function of ε1.

(c)
∫∞
−∞

∣∣pε(x+ y)− pε(x)
∣∣dx ≤ cε|y| for each y and constant cε, where pε(·) is the density of ε1.

(d) E
(
‖ε1‖2+ς

)
<∞ for some ς > 0 such that 2ς2 + 4ς − 5 > 0.

(e)
∑∞
j=0 cj,klx

j for |x| ≤ 1 and cj,kl = O (j−ς?) as j −→∞ and ς? > 1 satisfies ς?+1/2 > 2+ς > 2/(ς?−1)
with ς defined in (d) above.

(f) G = σ (εt, . . . , ε1; εt+1, εt, . . . , ε−∞) be a σ-field generated by {(εi, εj) : 1 ≤ i ≤ t;−∞ ≤ j ≤ t+ 1} where
E (εt | Gt−1) = 0 almost surely (a.s.), E

(
ε2t
∣∣ Gt−1) = σ2

ε a.s., and E
(
ε4t
∣∣ Gt−1) <∞ a.s. for all t ≥ 2

where σ2
ε > 0.

(g) Let Wε,n(r) = n−1/2
∑bnrc
t=1 εt and Wn(r) =

(
Vcxn(r)>, Vczn(r)

)>
where similar to equation (5a),

Vcxn(r) = n−1/2Xbnrc and Vczn(r) = n−1/2Zbnrc. There exists a Skorohod space D[0, 1]d+2 on which
(Wε,n(r),Wn(r)) −→d (Vε,0(r), Vw(r)) as n −→ ∞, where (Vε,0(r), Vw(r)) is a vector stochastic pro-
cess, Vε,0(r) is a Brownian motion process, Vw(r) = (Vη,cx(r), Vξ,cz (r)) and Vη,cx(r) and Vξ,cz (r) are
Ornstein-Uhlenbeck processes with parameters cx and cz respectively, when cx, cz > 0. When cz = 0,
Vξ,0(r) is a Brownian motion.

(h) K(·) is a continuous, symmetric, non-negative and bounded probability kernel function satisfying∫
‖u‖K(u)du <∞.

(i) Let h −→ 0 and nh −→ 0 as n −→∞.

The assumptions above are a close adaptation of Assumption A.1 in Gao and Phillips (2013). In particular,
assumptions (a) - (e) ensure that Wt is stationary and α-mixing and accommodates contemporaneous endo-
geneity between regressors, varying coefficient components, and regression residuals, whereas assumption (f)
and (g) allow for heteroskedastic residuals εt. It should also be noted that a similar set of assumptions also
exists in Phillips (2009) and Wang and Phillips (2009) although the latter did not consider contemporaneous
endogeneity between covariates, coefficient components, or residuals.

Theorem 2. Under Assumptions 2, 6 and 7, let Xt and Zt be defined by equations (14) and (15) with
cx > 0 and cz ≥ 0. Then, as n −→∞,

√
hn3/4

(
β̂(z)− β(z)− h2Bβ(z)

)
−→d MN (Σβ)
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a mean zero mixed normal distribution with conditional covariance matrix

Σβ = σ2
ε ν0(K)

∫ 1

0

Vη,cxV
>
η,cxdLVξ,cz (1, 0)

There are several important remarks to note at this point. Observe in particular that Theorem 2 implies the
asymptotic variance of β̂(z) has order O

(
h−1n−3/4

)
. This is clearly larger than O

(
h−1n−1

)
which arises in

the case of stationary Zt. In fact, this is also in clear contrast to the case of stationary Xt and nonstationary
Zt considered in Cai et al. (2009) where the asymptotic variance of β̂(z) has order O

(
h−1n−1/2

)
. On the

other hand, the asymptotic bias term h2Bβ(z) remains the same in all three scenarios. This of course is
to be expected since the bias term arises as the result of using local linear estimation. These observations
readily lead to the IAMSE of β̂ given by

IAMSE =

∫ (
1

4
h4µ2

2(K)‖β(2)(z)‖+ h−1n−3/4 tr (Σβ)

)
w(z)dz

for some non-negative weight function w(·). Note further that minimizing the IAMSE with respect to h
renders the optimal bandwidth h as h? = cn−3/20 for some c > 0. Although this is significantly smaller than
the optimal bandwidth derived when Zt is stationary, it is nonetheless somewhat larger than the optimal
bandwidth obtained in the case of stationary Xt and nonstationary Zt in Cai et al. (2009).

4. Concluding Remarks

This paper has analyzed the time varying coefficients model when covariates are nearly (possibly weakly)
integrated and time varying coefficients are stationary or nearly (possibly purely) integrated. Along similar
lines of reasoning to Cai and Wang (2008) and Cai et al. (2009), time varying coefficient components in
this note were estimated nonparametrically using the the local linear fitting scheme and their asymptotic
properties were derived using local time asymptotics. In particular, when Zt is stationary, the asymptotics of
time varying coefficient depend on whether the covariates Xt are nearly or weakly integrated. Nevertheless,
the rate of convergence of the variance of time varying coefficients remains the same regardless of whether
Xt is a near or pure I(1) process. On the other hand, the asymptotic analysis of Section 3 with nearly
integrated covariates and nearly (possibly purely) integrated time varying components produces estimators
with variances of larger order than in the case of stationary Xt and Zt and stationary Xt and pure I(1) time
varying components considered in Cai et al. (2009). Similar conclusions also hold for the optimal bandwidth
choices. In this regard, although not explicitly analyzed here, the two-step estimation procedure considered
in Cai et al. (2009) to deal with optimal bandwidths of different orders in the stationary Zt models clearly
continues to hold with nearly (weakly) integrated covariates as well. It is also worth mentioning that this
note has answered several appeals in the literature to develop a theory for time varying coefficient models
when both the covariates and time varying components are nearly integrated process. To the best knowledge
of this author, this article is the first such contribution. Finally, given the importance of nearly (weakly)
integrated process in financial and macroeconomic modelling, it is warranted to encourage the use of methods
developed here in relevant empirical studies.

11



References
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Appendix A

Proof of Theorem 1. The proof follows the proof of Theorem 2.1 in Cai et al. (2009). In this regard,

define Hm,n =

(
1 0
0 h

)
⊗Dm,n and Hn =

(
1 0
0 h

)
⊗Dn and note that

Hm,n

(
β̂(z)

β̂(1)(z)

)
= Sm,n(z)−1n−1

n∑
t=1

Kh(Zt − z)

× Yt
(

1
Zt,z,h

)
⊗
(
D−1m,nXt

)
(16a)

Hn

(
β̂(z)

β̂(1)(z)

)
= Sn(z)−1n−1

n∑
t=1

Kh(Zt − z)

× Yt
(

1
Zt,z,h

)
⊗
(
D−1n Xt

)
(16b)

where Zt,z,h = h−1 (Zt − z) and Sm,n(z) and Sn(z) may be partitioned as

Sm,n(z) =

(
Sm,n,0(z) Sm,n,1(z)
Sm,n,1(z) Sm,n,2(z)

)

Sn(z) =

Sn,0(z) Sn,1(z) Sn,4(z)
Sn,1(z) Sn,2(z) Sn,7(z)
Sn,4(z) Sn,7(z) Sn,5(z)


where for j = 0, 1, 2, 4, 5, 7,

Sm,n,j(z) = n−1
n∑
t=1

Kh(Zt − z)Zjt,z,h
(
D−1m,nXt

)⊗2
Sn,j(z) = n−1

n∑
t=1

Kh(Zt − z)Zj mod 3
t,z,h

(
D−1n Xt

)⊗2
Note in fact that Sm,n,j(z) and Sn,j(z) can further be partitioned as

Sm,n,j(z) =

(
Fm,n,j,0(z) Fm,n,j,1(z)
Fm,n,j,1(z)> Fm,n,j,2(z)

)

Sn,j(z) =

 Fn,j,0(z) Fn,j,1(z) Fn,j,3(z)
Fn,j,1(z)> Fn,j,2(z) Fn,j,4(z)
Fn,j,3(z)> Fn,j,4(z)> Fn,j,5(z)


where
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Fm,n,j,0(z) = Fn,j,0(z)

= n−1
n∑
t=1

Zj mod 3
t,z,h Kh(Zt − z)Xt1X

>
t1

Fm,n,j,1(z) = m1/2Fn,j,0(z)

= n−1
n∑
t=1

Kh(Zt − z)Zj mod 3
t,z,h Xt1m

1/2n−1/2X>t2

Fm,n,j,2(z) = mFn,j,2(z)

= n−1
n∑
t=1

Zj mod 3
t,z,h Kh(Zt − z)

(
m1/2n−1/2Xt2

)⊗2
Fn,j,3(z) = n−1

n∑
t=1

Zj mod 3
t,z,h Kh(Zt − z)Xt1n

−1/2X>t3

Fn,j,4(z) = n−1
n∑
t=1

Zj mod 3
t,z,h Kh(Zt − z)n−1/2Xt2n

−1/2X>t3

Fn,j,5(z) = n−1
n∑
t=1

Zj mod 3
t,z,h Kh(Zt − z)

(
n−1/2Xt3

)⊗2

For l = 1, 2, also define the quantity

F ?n,j,l(z) = n−1
n∑
t=1

Zj mod 3
t,z,h X⊗lt1 Kh(Zt − z)

Note further that Xt1 and Zt are stationary. Accordingly, with a change-of-variables transformation applied
to Kh(·) and a Taylor expansion argument on the resulting density functions, the following holds.

EF ?n,j,l(z) = E
(
Zj mod 3
t,z,h X⊗lt1 Kh(Zt − z)

)
= fz(z)Ml(z)µj mod 3(K) + o(1)

VF ?n,j,l(z) = O((nh)−1)

= o(1)

where the last line above follows from Assumptions 5 (g). Accordingly,

F ?n,j,l(z) = fz(z)Ml(z)µj mod 3(K) + op(1) (17)

and therefore

Fm,n,j,0(z) = Fn,j,0(z) = F ?n,j,2(z)

= fz(z)Ml(z)µj mod 3(K) + op(1) (18)

Consider next Fei = σ (Xt1, Zi : t ≤ 1) as the smallest σ-field containing the history of (Xt1, Zt) and define

et = Kh(Zt − z)Zjmod 3
t,z,h Xt1 − E

(
Kh(Zt − z)Zjmod 3

t,z,h Xt1

)
. Also, let Vmnt = m1/2n−1/2Xt2 and note that
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Vmnbnrc = m1/2Vmn(r) where Vmn(r) was defined in equation (5a) for any r ∈ [0, 1]. Moreover, for 0 ≤ δ ≤ 1,
set N = b1/δc, tk = bkn/Nc+ 1, t?k = tk+1 − 1, and t??k = min {t?k, n}. Then, replacing Unt in the proof of
Cai et al. (2009) with Vmnt here, yields the following result.

∣∣∣∣∣n−1
n∑
i=1

Vmniei

∣∣∣∣∣ =

∣∣∣∣∣n−1
N−1∑
k=0

t??k∑
t=tk

Vmntet

∣∣∣∣∣
≤ n−1

N−1∑
k=0

t??k∑
t=tk

∣∣∣E (VmnkVmnteket)
∣∣∣

= n−1
N−1∑
k=0

t??k∑
t=tk

∣∣∣E (VmnkVmntE (eket|Zk, Zt))
∣∣∣

Next, note that

n−1
N−1∑
k=0

t??k∑
t=tk

∣∣∣E (eket|Zk, Zt)
∣∣∣ ≤ N

n
sup

0≤k≤N−1
E

 t??k∑
t=tk

e2t

∣∣∣∣∣Zt


≤ sup
t≤n

E

(
1

δn

t+δn∑
i=t

e2i

∣∣∣∣∣Zi
)

≤ Ch−1

where the last line follows from the result

sup
s≥0

V

(
s+a∑
t=s+1

et

)
= O(ah−1)

Accordingly,

∣∣∣∣∣n−1
n∑
i=1

Vmniei

∣∣∣∣∣ ≤ Ch−1n−1
N−1∑
k=0

t??k∑
t=tk

∣∣∣E (VmnkVmnt)
∣∣∣

≤ Ch−1 sup
t≤n

E

(
n−1

n∑
t=1

V 2
mnt

)

By equation (9), since n−1
∑n
t=1 V

2
mnt converges weakly to V

(2)
D (x), the expectation in the last line above is

O(m/n). Accordingly, the fact that m/n −→ 0 along with Assumptions 5 (g) ensures that

n−1
n∑
i=1

Vmniei = O
(
m(nh)−1

)
−→ 0

Again, invoking equation (9) and the conclusion above, it follows that

Fm,n,j,1(z) = E
(
Kh(Zt − z)Zj mod 3

t,z,h Xt1

)
n−1

n∑
t=1

Vmnt + n−1
n∑
i=1

Vmniei

= fz(z)M1(z)µj mod 3(K)V
(1)
D + op(1) (19)
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Similar reasoning also produces

Fm,n,j,2(z) = fz(z)µj mod 3(K)V
(2)
D + op(1) (20)

Consider now the case when m = c and Xt2 is a nearly integrated process. In this case, let Vcnt = n−1/2Xt2

and note that Vcnbnrc = Vcn(r) where Vcn(r) was also defined in equation (5a). In this case, equation (10a)

implies that n−1
∑n
t=1 V

⊗2
cnt converges weakly to V

(2)
η,c (x) and it is not difficult to show that

n−1
n∑
i=1

Vcniei = O
(
(nh)−1

)
−→ 0

Accordingly, it follows from the above that

Fn,j,1(z) = fz(z)M1(z)µj mod 3(K)V (1)
η,c + op(1) (21a)

Fn,j,2(z) = fz(z)µj mod 3(K)V (2)
η,c + op(1) (21b)

Similar reasoning was used in Cai et al. (2009) to derive Fn,j,3 and Fn,j,5 where

Fn,j,3(z) = fz(z)M1(z)µj mod 3(K)V
(1)
ω,0 + op(1) (22a)

Fn,j,5(z) = fz(z)µj mod 3(K)V
(2)
ω,0 + op(1) (22b)

What remains to be shown is the limiting form of Fn,j4. To do so, define ẽt = Kh(Zt − z)Zjmod 3
t,z,h −

E
(
Kh(Zt − z)Zjmod 3

t,z,h

)
and Vc0nt = n−1/2Xt2n

−1/2X>t3 and note that for r ∈ [0, 1], the results in Phillips

(2009) demonstrate that Vc0nbnrc converges to Vη,c,ω,0 where the latter is defined in equation (12). Again,
invoking the methodology used above, it can readily be shown that n−1

∑n
i=1 Vc0niẽi −→ 0 and therefore

Fn,j,4(z) = E
(
Kh(Zt − z)Zj mod 3

)
n−1

n∑
t=1

Vc0nt + n−1
n∑
i=1

Vc0niei

= fz(z)µj mod 3(K)Vη,c,ω,0 + op(1) (23)

Noting that µ0(K) = 1 and µ1(K) = 0 and plugging equations (18) to (20) into Sm,n,j(z) and equations (18),
(21a), (21b), (22a), (22b) and (23) into Sn,j(z) then yields

Sm,n(z) = fz(z)

(
1 0
0 µ2(K)

)
⊗ SW (z) + op(1) (24a)

Sn(z) = fz(z)

1 0 0
0 µ2(K) 0
0 0 µ2(K)

⊗ SN (z) + op(1) (24b)

Denote next by Rm,n(z)−1 and Rn(z)−1the d × d submatrix in the upper-left corner of Sm,n(z)−1 and
Sn(z)−1 respectively. In fact, it follows from equations (24a) and (24b) that

Rm,n(z)−1 = fz(z)
−1SW (z)−1 + op(1) (25a)

Rn(z)−1 = fz(z)
−1SN (z)−1 + op(1) (25b)
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Moreover, from equations (16a) and (16b) it follows that

Dm,n

(
β̂(z)− β(z)

)
≡ Em,n,1 + Em,n,2 (26a)

Dn

(
β̂(z)− β(z)

)
≡ En,1 + En,2 (26b)

where

Em,n,1 = Rm,n(z)−1Bm,n(z) (27a)

Em,n,2 = n−1
n∑
t=1

Kh(Zt − z)εtD−1m,nXt (27b)

En,1 = Rn(z)−1Bn(z) (27c)

En,2 = n−1
n∑
t=1

Kh(Zt − z)εtD−1n Xt (27d)

and

Bm,n(z) = n−1
n∑
t=1

Kh(Zt − z)X⊗2t D−1m,n

×
(
β(Zt)− β(z)− (Zt − z)β(1)(z)

)
Bn(z) = n−1

n∑
t=1

Kh(Zt − z)X⊗2t D−1n

×
(
β(Zt)− β(z)− (Zt − z)β(1)(z)

)
Similar to Sm,n(z) and Sn(z), here Bm,n(z) and Bn(z) admit the following partitions

Bm,n(z) =

(
Gn,0(z) +Gm,n,1(z)
Gm,n,2(z) +Gm,n,3(z)

)

Bn(z) =

Gn,0(z) +Gn,1(z) +Gn,2(z)
Gn,3(z) +Gn,4(z) +Gn,5(z)
Gn,6(z) +Gn,7(z) +Gn,8(z)


where
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Gn,0(z) = n−1
n∑
t=1

Kh(Zt − z)X⊗2t1

×
(
β1(Zt)− β1(z)− (Zt − z)β(1)

1 (z)
)

Gm,n,1(z) = n−1
n∑
t=1

Kh(Zt − z)Xt1m
1/2n−1/2X>t2

×
(
β2(Zt)− β2(z)− (Zt − z)β(1)

2 (z)
)

Gm,n,2(z) = n−1
n∑
t=1

m−1/2n1/2Kh(Zt − z)m1/2n−1/2Xt2X
>
t1

×
(
β1(Zt)− β1(z)− (Zt − z)β(1)

1 (z)
)

Gm,n,3(z) = n−1
n∑
t=1

m−1/2n1/2Kh(Zt − z)mn−1X⊗2t2

×
(
β2(Zt)− β2(z)− (Zt − z)β(1)

2 (z)
)

and similarly

Gn,1(z) = n−1
n∑
t=1

Kh(Zt − z)Xt1n
−1/2X>t2

×
(
β2(Zt)− β2(z)− (Zt − z)β(1)

2 (z)
)

Gn,2(z) = n−1
n∑
t=1

Kh(Zt − z)Xt1n
−1/2X>t3

×
(
β3(Zt)− β3(z)− (Zt − z)β(1)

3 (z)
)

Gn,3(z) = n−1
n∑
t=1

n1/2Kh(Zt − z)n−1/2Xt2X
>
t1

×
(
β1(Zt)− β1(z)− (Zt − z)β(1)

1 (z)
)

Gn,4(z) = n−1
n∑
t=1

n1/2Kh(Zt − z)n−1X⊗2t2

×
(
β2(Zt)− β2(z)− (Zt − z)β(1)

2 (z)
)

Gn,5(z) = n−1
n∑
t=1

n1/2Kh(Zt − z)n−1/2Xt2n
−1/2X>t3

×
(
β3(Zt)− β3(z)− (Zt − z)β(1)

3 (z)
)
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Gn,6(z) = n−1
n∑
t=1

n1/2Kh(Zt − z)n−1/2Xt3X
>
t1

×
(
β1(Zt)− β1(z)− (Zt − z)β(1)

1 (z)
)

Gn,7(z) = n−1
n∑
t=1

n1/2Kh(Zt − z)n−1/2Xt3n
−1/2X>t2

×
(
β2(Zt)− β2(z)− (Zt − z)β(1)

2 (z)
)

Gn,8(z) = n−1
n∑
t=1

n1/2Kh(Zt − z)n−1X⊗2t3

×
(
β3(Zt)− β3(z)− (Zt − z)β(1)

3 (z)
)

Making use of Taylor’s expansion, similar arguments which yield equations (18) to (20) can also be used
here to show that

E (Gn,0) = h2fz(z)M2(z)

(
1

2
µ2(K)β

(2)
1 (z)

)
(1 + o(1)) (29)

V (Gn,0) = o(1)

where V (·) is the variance operator. Accordingly,

Gn,0 = h2fz(z)M2(z)

(
1

2
µ2(K)β

(2)
1 (z)

)
(1 + op(1))

and it can be shown that

Gm,n,1 = h2fz(z)M1(z)V
(1)>
D

(
1

2
µ2(K)β

(2)
2 (z)

)
(1 + op(1))

Gm,n,2 = h2fz(z)V
(1)
D M1(z)>m−1/2n1/2

(
1

2
µ2(K)β

(2)
1 (z)

)
(1 + op(1))

Gm,n,3 = h2fz(z)V
(2)
D m−1/2n1/2

(
1

2
µ2(K)β

(2)
2 (z)

)
(1 + op(1))

Similarly, it can also be demonstrated that

Gn,1 = h2fz(z)M1(z)V (1)>
η,c

(
1

2
µ2(K)β

(2)
2 (z)

)
(1 + op(1))

Gn,2 = h2fz(z)M1(z)V
(1)>
ω,0

(
1

2
µ2(K)β

(2)
3 (z)

)
(1 + op(1))

Gn,3 = h2fz(z)V
(1)
η,cM1(z)>n1/2

(
1

2
µ2(K)β

(2)
1 (z)

)
(1 + op(1))

Gn,4 = h2fz(z)V
(2)
η,c n

1/2

(
1

2
µ2(K)β

(2)
2 (z)

)
(1 + op(1))
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Gn,5 = h2fz(z)Vη,c,ω,0n
1/2

(
1

2
µ3(K)β

(2)
3 (z)

)
(1 + op(1))

Gn,6 = h2fz(z)V
(1)
ω,0M1(z)>n1/2

(
1

2
µ2(K)β

(2)
1 (z)

)
(1 + op(1))

Gn,7 = h2fz(z)V
>
η,c,ω,0n

1/2

(
1

2
µ2(K)β

(2)
2 (z)

)
(1 + op(1))

Gn,8 = h2fz(z)V
(2)
ω,0n

1/2

(
1

2
µ3(K)β

(2)
3 (z)

)
(1 + op(1))

Now, inserting Gm,n,i and Gn,i for i = 1, . . . , 6 back into Bm,n(z) and Bn(z) respectively, implies that

Bm,n(z) = h2fz(z)SW (z)Dm,n

(
1

2
µ2(K)β(2)(z)

)
(1 + op(1)) (30a)

Bn(z) = h2fz(z)SN (z)Dn

(
1

2
µ2(K)β(2)(z)

)
(1 + op(1)) (30b)

Moreover, noting equations (25a) and (25b) and inserting the above into equations (27a) and (27c) implies
that

D−1m,nEm,n,1 = h2Bβ(z) + op(h
2)

D−1n En,1 = h2Bβ(z) + op(h
2)

Next, consider equations (26a) and (26b) and note that

Em,n,2 = Dm,n

(
β̂(z)− β(z)−D−1m,nEm,n,1

)
= Dm,n

(
β̂(z)− β(z)− h2Bβ(z) + op(h

2)
)

En,2 = Dn

(
β̂(z)− β(z)−D−1n En,1

)
= Dn

(
β̂(z)− β(z)− h2Bβ(z) + op(h

2)
)

In this regard, define

Tm,n(z) =

(
Tm,n,1(z)
Tm,n,2(z)

)
=

√
h

n

n∑
t=1

Kh(Zt − z)εtD−1m,nXt

Tn(z) =

Tn,1(z)
Tn,2(z)
Tn,3(z)

 =

√
h

n

n∑
t=1

Kh(Zt − z)εtD−1n Xt

where
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Tm,n,1 = Tn,1

=

√
h

n

n∑
t=1

Kh(Zt − z)εtXt1

Tm,n,2 = m1/2Tn,2

=

√
h

n

n∑
t=1

Kh(Zt − z)εtm1/2n−1/2Xt2

Tn,3 =

√
h

n

n∑
t=1

Kh(Zt − z)εtn−1/2Xt3

and note that

√
nhDm,n

(
β̂(z)− β(z)− h2Bβ(z) + op(h

2)
)

= Rm,n(z)−1Tm,n(z) (31a)

√
nhDn

(
β̂(z)− β(z)− h2Bβ(z) + op(h

2)
)

= Rn(z)−1Tn(z) (31b)

Asymptotic normality of equations (31a) and (31b) can now be proven by establishing asymptotic normality
of Tm,n(z) and Tn(z). Since Tn,1 = Tm,n,1 contains only stationary variables, it follows from Cai et al. (2000)
that

Tm,n,1(z) = Tn,1(z) −→d N
(
0, σ2

ε ν0(K)fz(z)M2(z)
)

=
√
ν0(K)fz(z)Wε(1) (32)

where Wε(1) is a d1-dimensional Brownian motion on [0, 1] with covariance matrix σ2
εM2(z). Moreover,

since the first element of Xt1 is unity, it follows immediately that

√
h

n

n∑
t=1

Kh(Zt − z)εt −→d N
(
0, σ2

ε ν0(K)fz(z)
)

=
√
ν0(K)fz(z)Wε,1(1)

where Wε,1(r) is the first element of Wε(r). Moreover, by equation (8b) it now follows that

Tm,n,2 −→d

√
ν0(K)fz(z)

(∫ ∞
−∞

x2D(x)dx

)1/2

Wε,1(1) (33)

Now, putting equations (32) and (33) together implies that

Tm,n(z) −→d

√
ν0(K)fz(z)

(
Wε(1)(∫∞

−∞ x2D(x)dx
)1/2

Wε,1(1)

)

It is now clear that Tm,n(z) has a multivariate normal distribution with the conditional covariance matrix

of

(
Wε(1)(∫∞

−∞ x2D(x)dx
)1/2

Wε,1(1)

)
being
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σ2
ε

(
M2(z) M1(z)V

(1)>

D

V
(1)
D M1(z)> V

(2)
D

)
= σ2

εSW (z)

On the other hand, invoking Lemma A.1 of Cai and Wang (2008) now implies that

Tn,2 −→d

√
ν0(K)fz(z)

∫ ∞
−∞

Vη,c(r)dWε,1(r) (34a)

Tn,3 −→d

√
ν0(K)fz(z)

∫ ∞
−∞

Vω,0(r)dWε,1(r) (34b)

Putting equations (32), (34a) and (34b) together implies therefore that

Tn(z) −→d

√
ν0(K)fz(z)

 Wε(1)∫∞
−∞ Vη,c(r)dWε,1(r)∫∞
−∞ Vω,0(r)dWε,1(r)


Since Wε(·), Vη,c(·) and Vω,0(·) are mutually uncorrelated, it follows that Tn(z) has a mixed normal distri-

bution with the conditional covariance matrix of

 Wε(1)∫∞
−∞ Vη,c(r)dWε,1(r)∫∞
−∞ Vω,0(r)dWε,1(r)

 given by

σ2
ε

 A2(z) A1(z)V
(1)>
η,c A1(z)V

(1)
ω,0

V
(1)
η,c A1(z)> V

(2)
η,c Vη,c,ω,0

V
(1)
ω,0A1(z)> Vη,c,ω,0 V

(2)
ω,0

 = σ2
εSN (z)

Finally, invoking Slutsky’s theorem implies that

√
nhDm,n

(
β̂(z)− β(z)− h2Bβ(z) + op(h

2)
)

−→d f
−1/2
z (z)ν

1/2
0 (K)S−1W (z)

(
Wε(1)(∫∞

−∞ x2D(x)dx
)1/2

Wε,1(1)

)

and

√
nhDn

(
β̂(z)− β(z)− h2Bβ(z) + op(h

2)
)

−→d f
−1/2
z (z)ν

1/2
0 (K)S−1N (z)

 Wε(1)∫∞
−∞ Vη,c(r)dWε,1(r)∫∞
−∞ Vω,0(r)dWε,1(r)


Demonstrating that Σβ(z) takes the form specified in Theorem 1 should be clear. This completes the
proof.
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Appendix B

The proof of Theorem 2 relies on several auxiliary results contained in the lemmas below. In this regard
define Kj,h(v) = ( vh )jh−1K( vh ), where Kj,h(·) is continuous with compact support. Moreover, redefine Sn(z)
as

Sn(z) =
1

n3/2

n∑
t=1

Kh(Zt − z)
(

1
Zt,z,h

)
⊗X⊗2t

=

(
Sn,0(z) Sn,1(z)
Sn,1(z) Sn,2(z)

)
where as before Sn,j = n−3/2

∑n
t=1Kj,h(Zt − z)X⊗2t for j = 0, 1, 2. Note further that Sn,j can be expressed

as

Sn,j =
cn
n

n∑
t=1

X⊗2t,nKj (cn (Zt,n − zn))

where cn = n1/2h−1, Xt,n = n−1/2Xt, Zt,n = n−1/2Zt, and zn = n−1/2z. Observe here that zn −→ 0 for any
fixed z while zn = b if z = n1/2b for any constant b. The following set of results lead to the proof of Theorem 2.

Lemma B1. Let {ϑnk}, {ϑ?nk}, and {ϑ??nk} be sequences of random variables. Let uk,n be a process defined
as

uk,n = fn(ϑn1, . . . , ϑnk;ϑ?n1, . . . , ϑ
?
nk;ϑ??n1, . . . , ϑ

??
nk)

where fn(·; ·; ·) is a real function of its components. Furthermore, let {Fn,k : 1 ≤ k ≤ n} be a sequence
of increasing σ- fields such that {ϑn,k+1,Fn,k : 1 ≤ k ≤ n} is a martingale difference sequence and uk,n is
adapted to Fn,k for all 1 ≤ k ≤ n and n ≥ 1.

(a) Let
{
ϑ?n,k+1, ϑn,k+1,Fn,k : 1 ≤ k ≤ n

}
be a martingale difference sequence where {ϑnk} and {ϑ?nk}

satisfy the following conditions as n,m −→∞

max
m≤k≤n

∣∣E (ϑ?n,k+1

∣∣ Fn,k)− σ2
ϑ?

∣∣ −→ 0 a.s.

max
m≤k≤n

∣∣E (ϑn,k+1 | Fn,k)− σ2
ϑ

∣∣ −→ 0 a.s.

for some σ2
ϑ > 0 and σ2

ϑ? > 0, and for some δ > 0

max
m≤k≤n

(
E
(∣∣ϑn,k+1

∣∣2+δ ∣∣∣ Fn,k)+ E
(∣∣ϑ?n,k+1

∣∣2+δ ∣∣∣ Fn,k)) <∞ a.s.

(b) Let
{
ϑ??n,j : j ≥ 1

}
be Fn,1-measurable for each n ≥ 1, and there exists a sequence of positive constants

dn −→∞ and a Gaussian process Vϑ??(r) such that d−1n
∑bnrc
j=1 ϑ

??
nj −→d Vϑ??(r) on D[0,∞). Moreover,

Vϑ??(r) is assumed to be independent of Vϑ?(r) where the latter is the weak limit n−1/2
∑bnrc
j=1 ϑ

?
n,j+1 −→d

Vϑ?(r) on D[0, 1].

(c) Let max1≤k≤n
∣∣uk,n∣∣ = op(1) and n−1/2

∑n
k=1

∣∣uk,n∣∣∣∣∣E(ϑ?n,k+1ϑn,k+1

∣∣∣ Fn,k) ∣∣∣ = op(1).

23



(d) There exists a random variable T (ϑ?, ϑ??) > 0 such that T 2
n =

∑n
k=1 u

2
k,n −→d T

2 (ϑ?, ϑ??) as n −→
∞.

Then, it follows that T−1n

∑n
k=1 uk,nϑn,k+1 −→ N(0, 1).

Proof of Lemma B1. The proof follows directly from an extension of the martingale CLT of Hall and
Heyde (1980) in Theorem 2.1 of Wang (2011).

Lemma B2. Let Xt and Zt be defined as in equations (14) and (15) and suppose Assumptions 2, 6 and 7
hold. For all 0 < cx ≤ n and 0 ≤ cz ≤ n, j = 0, 1, 2, r ∈ [0, 1], and cn =

√
nh−1 −→ ∞ such that

cnn
−1 −→ 0 if z is fixed,

cnn
−1

n∑
t=1

Xt,nX
>
t,nKj (cn (Zt,n − zn)) −→p µj(K)

∫ 1

0

Vη,cx(r)Vη,cx(r)>dLVξ,cz (1, 0)

cnn
−1

n∑
t=1

Xt,nX
>
t,nK

2
j (cn (Zt,n − zn)) −→p νj(K)

∫ 1

0

Vη,cx(r)Vη,cx(r)>dLVξ,cz (1, 0)

When z = n1/2b the result continues to hold with LVξ,cz (1, 0) replaced with LVξ,cz (1, b).

Proof of Lemma B2. The results ensue immediately from Remark (b) of Theorem 1 of Phillips (2009)
by noting that g(x) = xx> is locally integrable and that Assumptions 6 and 7 satisfy Assumptions 2.2 -
2.4 of Phillips (2009). A similar result exists in Gao and Phillips (2013). Note further that when cz = 0,
LVξ,0(1, ·) is the local time of Zt when it’s a pure I(1) process.

Lemma B3. Let Xt and Zt be defined as in equations (14) and (15) and suppose Assumptions 2, 6 and 7
hold. For all 0 < cx ≤ n and 0 ≤ cz ≤ n, j = 0, 1, 2, r ∈ [0, 1], and cn =

√
nh−1 −→ ∞ such that

cnn
−1 −→ 0 if z is fixed,

σ2
ε

h

n3/2

n∑
t=1

XtX
>
t K

2
j,h (Zt − z) −→d σ

2
ε νj(K)

∫ 1

0

Vη,cxV
>
η,cxdLVξ,cz (1, 0)

Proof of Lemma B3. The proof is inspired by results in Phillips (2009), Sun et al. (2013) and Gao and
Phillips (2013). Let pt (· | X) denote the conditional density of Zt given Xt = X and define qt(· | ·) as the
conditional density of Zt√

t
given Xt√

t
= X√

t
. Note further that a change of variables argument implies that

pt (Z | X) = t−1/2qt

(
Z√
t

∣∣∣ X√
t

)
. Next, recall that Xt has dimension d × 1, let J = (J1, . . . , Jd)

>
be any

vector of real numbers such that J>J = 1, and define X?
t = J>Xt. Finally, recall the assumption that

σ2
ε = E

(
ε2t
∣∣ Zt, Xt

)
and observe that
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E
(
ε2t
∣∣ Zt, Xt

)
n3

n∑
t=1

E
(
X?4
t K

2
j,h (Zt − z)

)
=

σ2
ε

n3h2

n∑
t=1

E

(
X?4
t K

2
j

(
Zt − z
h

))

=
σ2
ε

n3h2

n∑
t=1

E

(
X?4
t E

(
K2
j

(
Zt − z
h

) ∣∣∣∣ Xt

))

=
σ2
ε

n3h2

n∑
t=1

E

(
X?4
t

∫ ∞
∞

K2
j (y) qt

(
yh+ z√

t

∣∣∣∣ Xt

)
h√
t
dy

)

≤ σ2
ε

n3h

n∑
t=1

1√
t

= O

(
1

n5/2h

)
= o (1) (35)

Equation (35) follows since E
(
X?4
t

)
= O(1), the integral expression is bounded and

√
nh −→∞. Next, let

pst (· | Zs, Xs, Xt) denote the conditional density of Zt−Zs given Zs, Xs, Xt. Moreover, if qst (· | Zs, Xs, Xt)

denotes the conditional density of Zt−Zs√
t−s given Zs, Xs, Xt, then pst (Z | Zs, Xs, Xt) = (t−s)−1/2qst

(
Z√
t−s

∣∣∣ Zs, Xs, Xt

)
.

Similar reasoning to equation (35) now yields the covariance result below.

E
(
ε2t
∣∣ Zt, Xt

)
n3h2

n∑
t=2

t−1∑
s=1

E

(
X?2
s X

?2
t Kj

(
Zs − z
h

)
Kj

(
Zt − z
h

))

=
σ2
ε

n3h2

n∑
t=2

t−1∑
s=1

E

(
X?2
s X

?2
t E

(
Kj

(
Zs − z
h

)
Kj

(
Zt − z
h

) ∣∣∣∣ Xs, Xt

))

=
σ2
ε

n3h2

n∑
t=2

t−1∑
s=1

E

(
X?2
s X

?2
t E

(
Kj

(
Zs − z
h

)
E

(
Kj

(
Zt − Zs

h
+
Zs − z
h

) ∣∣∣∣ Zs, Xs, Xt

)))

=
σ2
ε

n3h2

n∑
t=2

t−1∑
s=1

E
(
X?2
s X

?2
t

) ∫ ∞
∞

Kj (y)

(∫ ∞
∞

Kj (w + y) qst

(
wh√
t− s

∣∣∣∣ Xs, Xt

)
h√
t− s

dw

)
× qt

(
yh+ z√

s

∣∣∣∣ Xs, Xt

)
h√
s
dy

≤ σ2
ε

n3

n∑
t=2

t−1∑
s=1

1√
s

1√
t− s

= O

(
1

n3/2

)
= o (1) (36)

Equations (35) and (36) now imply that

E
(
ε2t
∣∣ Zt, Xt

)
n3h2

E

(
n∑
t=1

X?
tKj

(
Zt − z
h

))2

=
σ2
ε

n3h2

n∑
t=1

E

(
X?4
t K

2
j

(
Zt − z
h

))

+
σ2
ε

n3h2

n∑
t=2

t−1∑
s=1

E

(
X?2
s X

?2
t Kj

(
Zs − z
h

)
Kj

(
Zt − z
h

))
= o(1) (37)
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and Lemma B2 ensures that

σ2
ε

n3/2h

n∑
t=1

XtX
>
t K

2
j

(
Zt − z
h

)
−→d σ

2
ε νj(K)

∫ 1

0

Vη,cxV
>
η,cxdLVξ,cz (1, 0) (38)

σ2
ε

n3/2h

n∑
t=1

X?
tX

?>
t K2

j

(
Zt − z
h

)
−→d σ

2
ε νj(K)

∫ 1

0

V ?2η,cxdLVξ,cz (1, 0) (39)

where V ?η,cx is defined in the same way as Vη,cx when ηt is replaced with J>ηt. The result follows by noting
that Kj,h(v) = h−1Kj(v/h).

Lemma B4. Let Xt and Zt be defined as in equations (14) and (15) and suppose Assumptions 2, 6 and 7
hold. For all 0 < cx ≤ n and 0 ≤ cz ≤ n, j = 0, 1, 2, r ∈ [0, 1], and cn =

√
nh−1 −→ ∞ such that

cnn
−1 −→ 0 if z is fixed,

1

n3/2

n∑
t=1

XtX
>
t

(
β (Zt)− β(z)− β(1)(z) (Zt − z)

)
Kjh (Zt − z)

−→d h
2Bβ(z)

∫ 1

0

Vη,cxV
>
η,cxdLVξ,cz (1, 0) + op(h

2)

Proof of Lemma B4. The limiting form h2Bβ(z)
∫ 1

0
Vη,cxV

>
η,cxdLVξ,cz (1, 0) follows directly from Lemma

B2 by similar arguments found in the proof of Lemma B3 and a Taylor’s theorem application to β (Zt) −
β(z)− β(1)(z) (Zt − z) as in Equation (29). What remains is to demonstrate that the limit is op(h

2). To do

this it suffices to show that E
{∑n

t=1X
?2
t

(
β (Zs)− β(z)− β(1)(z) (Zs − z)

)
Kj

(
Zt−z
h

)}2
is Op

(
h4
)
.

1

n3

n∑
t=1

E

(
X?4
t

(
β (Zt)− β(z)− β(1)(z) (Zt − z)

)2
K2
j,h (Zt − z)

)

=
1

n3h2

n∑
t=1

E

(
X?4
t

(
β (Zt)− β(z)− β(1)(z) (Zt − z)

)2
K2
j

(
Zt − z
h

))

=
1

n3h2

n∑
t=1

E

(
X?4
t E

((
β (Zt)− β(z)− β(1)(z) (Zt − z)

)2
K2
j

(
Zt − z
h

) ∣∣∣∣ Xt

))

=
1

n3h2

n∑
t=1

E

(
X?4
t

∫ ∞
∞

(
β (yh+ z)− β(z)− β(1)(z)yh

)2
K2
j (y) qt

(
yh+ z√

t

∣∣∣∣ Xt

)
h√
t
dy

)

=
1

n3h2

n∑
t=1

E

(
X?4
t

∫ ∞
∞

(
1

2
y2h2β(2)(z) + o

(
h2
))2

K2
j (y) qt

(
yh+ z√

t

∣∣∣∣ Xt

)
h√
t
dy

)

≤ C
h3β(2)(z) + o

(
h3
)

n3

n∑
t=1

1√
t

=
(
h3β(2)(z) + o

(
h3
))
O

(
1

n5/2

)
= o

(
h3
)

(40)

for some positive constant C. Turning next to the covariance result, consider the following.
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1

n3h2

n∑
t=2

t−1∑
s=1

E

{
X?2
s X

?2
t

(
β (Zs)− β(z)− β(1)(z) (Zs − z)

)
×
(
β (Zt)− β(z)− β(1)(z) (Zt − z)

)
Kj

(
Zs − z
h

)
Kj

(
Zt − z
h

)}
=

1

n3h2

n∑
t=2

t−1∑
s=1

E

{
X?2
s X

?2
t E

((
β (Zs)− β(z)− β(1)(z) (Zs − z)

)
×
(
β (Zt)− β(z)− β(1)(z) (Zt − z)

)
Kj

(
Zs − z
h

)
Kj

(
Zt − z
h

) ∣∣∣∣ Xs, Xt

)}
=

1

n3h2

n∑
t=2

t−1∑
s=1

E

{
X?2
s X

?2
t E

((
β (Zs)− β(z)− β(1)(z) (Zs − z)

)
×
(
β (Zt − Zs + Zs)− β(z)− β(1)(z) (Zt − Zs + Zs − z)

)
Kj

(
Zs − z
h

)
Kj

(
Zt − Zs

h
+
Zs − z
h

) ∣∣∣∣ Zs, Xs, Xt

)}
=

1

n3h2

n∑
t=2

t−1∑
s=1

E

{
X?2
s X

?2
t

∫ ∞
−∞

(
β (yh+ z)− β(z)− β(1)(z)yh

)
Kj (y)

×
[∫ ∞
−∞

(
β ((w + y)h+ z)− β(z)− β(1)(z) (w + yh)

)
× Kj (w + y) qst

(
wh√
t− s

∣∣∣∣ Xs, Xt

)
h√
t− s

dw

]
qt

(
yh+ z√

s

∣∣∣∣ Xs, Xt

)
h√
s
dy

}
=

1

n3h2

n∑
t=2

t−1∑
s=1

E

{
X?2
s X

?2
t

∫ ∞
−∞

(
1

2
y2h2β(2)(z) + o

(
h2
))

Kj (y)

×
[∫ ∞
−∞

(
1

2
(w + y)2h2β(2)(z) + o

(
h2
))

× Kj (w + y) qst

(
wh√
t− s

∣∣∣∣ Xs, Xt

)
h√
t− s

dw

]
qt

(
yh+ z√

s

∣∣∣∣ Xs, Xt

)
h√
s
dy

}
≤ C

h4β(2)(z)2 + o
(
h4
)

n3

n∑
t=2

t−1∑
s=1

1√
s

1√
t− s

=
(
h4β(2)(z)2 + o

(
h4
))
O

(
1

n3/2

)
= o

(
h4
)

(41)

for some positive constant C. Observe next that Equations (40) and (41) imply that

1

n3h2
E

{
n∑
t=1

X?2
t

(
β (Zs)− β(z)− β(1)(z) (Zs − z)

)
Kj

(
Zt − z
h

)}2

=
1

n3h2

n∑
t=1

E

{
X?4
t

(
β (Zt)− β(z)− β(1)(z) (Zt − z)

)2
K2
j

(
Zt − z
h

)}

+
1

n3h2

n∑
t=2

t−1∑
s=1

E

{
X?2
s X

?2
t

(
β (Zs)− β(z)− β(1)(z) (Zs − z)

)
×
(
β (Zt)− β(z)− β(1)(z) (Zt − z)

)
Kj

(
Zs − z
h

)
Kj

(
Zt − z
h

)}
= o(h3) + o(h4) = o(h4) (42)
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This completes the proof.

Proof of Theorem 2. Since µ0(K) = 1 and µ1(K) = 0, note that Lemma B2 implies that

Sn(z) =

(
Sn,0(z) Sn,1(z)
Sn,1(z) Sn,2(z)

)
=

(
1 0
0 µ2(K)

)
⊗
∫ 1

0

Vη,cx(r)Vη,cx(r)>dLVξ,cz (1, 0)

Moreover, replacing Yt in equation (4) by Yt = X>t β(Zt) + εt further implies that

β̂(z)− β(z) =

(∫ 1

0

Vη,cx(r)Vη,cx(r)>dLVξ,cz (1, 0)

)−1
×

{
1

n3/2

n∑
t=1

XtX
>
t

(
β (Zt)− β(z)− β(1)(z) (Zt − z)

)
Kh (Zt − z)

+
1

n3/2

n∑
t=1

XtεtKh (Zt − z)

}

≡
(∫ 1

0

Vη,cx(r)Vη,cx(r)>dLVξ,cz (1, 0)

)−1
(B1 +B2) (43)

where

B1 =
1

n3/2

n∑
t=1

XtX
>
t

(
β (Zt)− β(z)− β(1)(z) (Zt − z)

)
Kh (Zt − z)

B2 =
1

n3/2

n∑
t=1

XtεtKh (Zt − z)

Moreover, note that Lemma B4 and Equation (43) now imply that

√
hn3/2

(
β̂(z)− β(z)− h2Bβ(z) + op(h

2)
)

=
√
hn3/2B2 + op(1) (44)

and the theorem will follow if it can be shown that
√
hn3/2B2 −→d MN (ΣB2) where by Lemma B 3,

ΣB2 = σ2
ε ν0(K)

∫ 1

0
V ?2η,cxdLVξ,cz (1, 0). In this regard, recall from Lemma B2 that equation (39) implies that

σ2
ε

h

n3/2

n∑
t=1

X?
tX

?>
t K2

0,h (Zt − z) −→d σ
2
ε ν0(K)

∫ 1

0

V ?2η,cxdLVξ,cz (1, 0) (45)

where X?
t = J?>Xt and J? = (J?1 , . . . , J

?
d )
>

is any real vector satisfying J?>J? = 1. Using the Cramér-Wold
device, it stands to argue that

√
hn3/2B2 =

√
h

n3/4

n∑
t=1

X?
t ε
?
tKh (Zt − z) −→d MN (0,ΣB2) (46)
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where equation (46) follows by Lemma B3 and Lemma B1. To see this, observe that Lemma B1 can be
invoked here using the following notation:

ϑn,t+1 = εt

ϑ?nt = J∗>εt

ϑ??nt = J∗>ε1−t

ut,n =
1√
hn1/2

1√
n
X∗tK

(
Zt − z
h

)
where J∗> =

(
J∗>1 , . . . , J∗>d

)
is a real vector satisfying J∗>J∗ = 1 and X∗t = J∗>Xt. Moreover, let Fn,t =

σ (εt, . . . , ε1; εt, εt−1, . . .) be generated by {(εi, εj) : 1 ≤ i ≤ t,−∞ < j ≤ t}. Note further that Assumptions 7
and equation (45) imply Assumptions (i), (ii), (iii), and (iv) of lemma B1, respectively. The Kolmogorov
inequality now implies that

P

(
max
1≤t≤n

∣∣ut,n∣∣ > δu

)
≤ 1√

nh
max
1≤t≤n

E

(
n−1X∗2t K

2

(
Zt − z
h

))
≤ C√

nh
= o(1) (47)

for any small δu > 0. Note that equation (47) implies that max1≤t≤n
∣∣ut,n∣∣ = op(1). Lemma B1 now implies

that equation (46) holds and this completes the proof.
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